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ABSTRACT

Floodplain wetlands in the wet–dry tropics are under increasing pressure from water resource development, and there is a need
for methods to assess the biophysical dynamics of these extensive and often remote ecosystems. This study assessed the capacity
of optical remote sensing methods to monitor the seasonal dynamics of inundation, turbidity, and aquatic vegetation cover for a
northern Australian savanna catchment. MODIS data were used to map seasonal flood inundation patterns, and Landsat 5 TM
data were used to map dry-season waterbody dynamics. A network of water-depth loggers and temperature sensors provided
ground observations of surface inundation dynamics, and was used to validate the inundation mapping. Post-flood waterbody
surface area declined by 89% over the dry season, with 70% of the decline occurring for Palustrine (floodplain) waterbodies. All
aquatic systems became increasingly disconnected as the dry season progressed. Statistical relationships were developed between
seasonal measurements of turbidity, aquatic vegetation cover, and Landsat spectral data. Catchment wide predictions showed that
turbidity increased and macrophyte cover decreased for the Palustrine and Lacustrine (lake) systems, while the Riverine systems
became less turbid over the dry season. These results show that, for open savanna landscapes where cloud cover does not limit
waterbody detection, optical remote sensing methods can be effectively applied to assess seasonal patterns of inundation and
accompanying biophysical dynamics. This provides an effective tool to evaluate the impact of river flow regime changes from
water resource use or climate change in these regions. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

Wet–dry tropical savannas cover about 20%of the global land
surface, primarily in the monsoonal climatic belts north and
south of the equator, and sometimes extending into the
subtropics (Peel et al., 2007). These systems are characterized
by strong seasonality in precipitation, with high river flows
and extensive floodplain inundation occurring over an often
brief wet season, followed by low to zero flows and
waterbody contraction and isolation during the dry season
(Cresswell et al., 2009; McDonald & McAlpine, 1991). The
timing, extent, duration, and inter-annual variability of
inundation control the exchanges of water and biota between
rivers and their floodplains and the degree of seasonal
isolation and desiccation of waterbodies determine the
distribution of aquatic refugia that persist during the dry
season (Hamilton&Gehrke, 2005; Junk et al., 1989). Aquatic
ecosystems in wet–dry tropical savannas across the world are
under increasing pressure from human population growth and
climate change (Woinarski et al., 2007). Savanna floodplains

and waterbodies are increasingly affected by multiple
anthropogenic stressors such as water extraction, invasive
animals, weeds, and the potentially acute impact of climate
change on dry season aquatic refugia (Tockner et al., 2010;
Vorosmarty et al., 2010). Due to their vast size and
remoteness from major cities, these systems tend to be less
well understood than temperate ecosystems. Methods for
measuring, monitoring, and modelling these ecosystems are
required to enable the assessment of changes in these systems
(Hamilton & Gehrke, 2005).

Wet–dry tropical savannas that are subject to seasonal
inundation exhibit large differences in the length of the
wet season and the amount of rainfall over the dry season
(Warfe et al., 2011). For example, major savanna floodplain
complexes in South America have wet seasons of 3–6months
with corresponding long floodplain residence times over
extensive areas (Hamilton et al., 2002b; 2004). Compared
with other continents, wet–dry tropical savanna systems in
northern Australia have a comparatively short summer wet
season with high intensity rainfall (Kennard et al., 2010;
Petheram et al., 2008), but with very little rainfall occurring
over the dry season (Jackson, 1988). Hence, the savanna
landscapes of the wet–dry tropics of northern Australia
require monitoring and assessment approaches that are
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adaptable to relatively short but extensive floodplain
inundation, followed by a long dry season during a strong
net water deficit occurs, often resulting in little surface water
left on the landscape by the end of the dry season (Cresswell
et al., 2009).
This inundation pattern drives a marked seasonal response

in aquatic primary production that ultimately supports aquatic
food webs in savanna rivers and floodplains. Although
vascular plants often make up a conspicuous proportion of
primary production on the floodplain, algae appear to be a
more important food source for aquatic consumers in
floodplain and river waterbodies (Bunn et al., 2003; Douglas
et al., 2005), a conclusion that has also been reached for
humid tropical floodplains (Lewis et al., 2000a, bQ3 ). The
critical mediating factors influencing algal production are
light attenuation, nutrient availability, and temperature
(Davies et al., 2008). Light availability in aquatic systems is
determined bywaterbodymorphology, turbidity and depth, as
well as shading from aquatic and surrounding vegetation
(Anthony et al., 2004; Liu et al., 2010). Turbidity due to
suspended clays can be a particularly important limiting factor
in Australian waters (Hamilton & Gehrke, 2005). Given the
likely importance of local algal production to food webs in
these systems, methods are also required to assess water
turbidity as well as inundation duration and vegetation
(macrophyte) cover.
Optical and radar remote sensing applications for mapping

inundation dynamics provide useful approaches for under-
standing the ecohydrology of floodplain aquatic systems
(Frazier & Page, 2009; Hamilton et al., 2002a; Hess &
Melack, 2003; Khan et al., 2011). In this study, optical
remotely sensed data [visible and infrared (IR)] combined
with hydrological and ecological field measurements were
used to develop methods for monitoring the seasonal
dynamics of aquatic systems in a savanna river catchment
in northern Australia. Our aims were (1) to develop and apply
robust remote sensing methods for delineating seasonal
inundation dynamics that could be applied over large areas in
the absence of intensive ground truthing information, and
(2) to explore the seasonal biophysical dynamics of water
features by developing empirical relationships between
seasonal measurements of turbidity, macrophyte cover, and
optical spectral data. These relationships are then applied to
predict catchment-wide seasonal distributions of these
biophysical features, providing insight to the seasonal
dynamics of aquatic habitat conditions.

Study area

The Mitchell River catchment study area (71 630 km2) is
located in northern Queensland, Australia (FigureF1 1). The
wet–dry tropical climate of the catchment is largely controlled
by the equatorial southern monsoon (McDonald and
McAlpine 1991) and is strongly seasonal with >80% of the
annual rainfall occurring during the wet season months of
December to March. Mean annual rainfall increases from
around 600mm in the south to over 1200mm in the northeast
and northwest. High mean annual evapotranspiration leads to
annual water deficits across the catchment except in the very

wettest of years (Cresswell et al., 2009). The rugged hill
terrain in much of the headwater areas, ranging up to 1200-m
elevation, grades to Australia’s largest fluvial megafan that
dominates the western part of the catchment. Megafans in this
region are subject to complex fluvial processes and gully
erosion of the alluvial floodplain and megafan deposits are
widespread across the tropical savanna catchments in
northern Queensland (Brooks et al., 2009). The majority of
the catchment is open savanna woodland and grasslands with
less than 30% foliage projective cover (FPC) (Armston et al.,
2004). Catchment land use is dominated by cattle grazing of
unimproved savanna woodland and grasslands. Only small
areas of intensive agriculture and mining occur in the
catchment, and the major anthropogenic disturbances are
associated with cattle grazing, erosion, and fire (Brooks et al.,
2009). None of the catchment’s river channels in the lower
floodplain reaches is impounded (Pusey & Kennard, 2009),
with the most significant channel modifications being dry-
season channel road crossings.

Aquatic habitat description

The freshwater habitat classification scheme used in this study
includes the Riverine systems (rivers, streams and channe-
lized waterbodies), the Lacustrine systems (large waterbodies
situated in a topographic depression or river channels that are
largely open water features), and the Palustrine systems
(floodplains and vegetated wetlands such as swamps and
including small, shallow, permanent, or intermittent flood-
plain waterbodies) (Auricht, 2010; Cowardin et al., 1979)
(Figure 1). These aquatic systems have different habitat
characteristics, and the classification is used in this study to
compare the seasonal dynamics of each system. The mapping
of the aquatic systems used in this studywas developed as part
of the Queensland Wetland Mapping and Classification
programme (EPA, 2005), which analysed Landsat images
over a 10-year period to derive waterbody inundation
frequency, which was combined with aquatic feature
mapping derived from 1:50 000 scale topographic mapping.
The Landsat mapping used water signatures defined by
Landsat Thematic Mapper (TM) Band 5, along with closely
affiliated shadow and greenness signatures in Bands 3, 4, and
5, to map waterbodies from images captured in 1991, 1995,
1997, 1999, and 2001 (Knight et al., 2009).

The Riverine system consists of the main Mitchell River
channel (up to 2 km wide in places) and upper catchment
tributary channels, as well as a network of large lower
catchment distributary channels (e.g. the Nassau and Scrutton
rivers) that cross the floodplain and discharge directly into the
Gulf of Carpentaria (Figure 1). Large off-channel Riverine
waterbodies associated with the main and distributary
channels are found on the megafan floodplain (Brooks
et al., 2009). Tributary channels gradually increase in size and
have less overhanging vegetation with increasing distance
from the headwaters to the mouth. During the wet season,
main channel flow occurs as a single macro-channel flow,
followed by a contraction to a more sinuous flow as islands
and bars emerge during the dry season. The connectivity of
channels to the floodplain is dependent on river stage, with
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stage heights from 5 to 20m above low water resulting in
large losses of river water to overbank discharge onto the
floodplain or down the distributary channels (Brooks et al.,
2009). At maximum inundation, sheet flow across the
floodplain outside of the channels dominates, and flow paths
vary according to the distribution of rainfall and the resultant
discharge dynamics. During the dry season, seawater
penetrates well up some of the channels with little or no
discharge, and tidal effects can extend further upriver.
The Lacustrine (lake) systems (>8 ha) increase in size and

abundance on the megafan floodplain in the lower catchment.
Only the deepest lakes are perennial, and many lakes dry up
during the dry season. The floodplain contains many
thousands of Palustrine waterbodies (Figure 1) that are filled
from either overbank flow from rivers or from local
precipitation and runoff (Kennard, 2010). These Palustrine
waterbodies range in size from many hectares to very small
shallow depressions, and almost all are non-perennial or
ephemeral, with the majority drying up within the first few
months of the end of the wet season. Field reconnaissance in
the early and late dry season indicated that, as the dry season
progresses, the Lacustrine and Palustrine floodplain water-
bodies contract, become more turbid if they do not dry, and
their macrophyte cover within the water and on emergent
banks usually declines. Depending on waterbody depth,
macrophytes comprise a range of littoral, edge, emergent,
submerged, and floating species and become abundant
following flood events. There is overhanging vegetation on
the Riverine systems, particularly in the upper catchment;
however, the majority of the Lacustrine and Palustrine
waterbodies have only fringing overhanging vegetation.

METHODS

Field sampling

Physical measurements. A network of depth loggers and
temperature sensors (used for detecting inundation) was
deployed to provide information on the floodplain hydrology
of theMitchell River catchment and to provide data that could
be used to validate the remote sensing. Nine depth loggers
(In-Situ LevelTROLL and BaraTROLL pressure transducers;
In-Situ Inc.) and 33 temperature sensor (Thermochron
iButton) (Hubbart et al., 2005) sites were deployed in
the catchment in October 2008 and operated through the
2008–2009 wet season. Loggers and temperature sensors
were positioned just above October water levels in the
main channel and the tributary and distributary channels.
Barometric loggers to correct for local barometric pressure
variations were installed in elevated positions within 5 km of
depth logger sites. Depth loggers and temperature sensors
were retrieved in June 2009, and depth logger data were
corrected for barometric pressure.

The amplitude of diel variation in temperature, derived
from the iButton temperature sensors, was used as an index of
inundation (Hubbart et al., 2005). Temperature sensor sites
contained vertical arrays of three iButton temperature sensors
that were affixed to trees at elevations suitable for capturing
the anticipated range of water levels. An additional control
sensor was located in an elevated position within 1 km of the
iButton vertical arrays, and most often at those sites. On
retrieval, temperature sensor data were converted to diel
ranges as a measure of the degree of inundation-induced
damping. To determine a threshold degree of damping of the

Figure 1. Mitchell River catchment showing the extent of canopy cover >30% and the depth logger, temperature sensor, turbidity and macrophyte sites.
The dark areas on the Landsat 5 TM MIR insert images show example waterbodies for the Riverine, Lacustrine, and Palustrine aquatic systems during

March 2009.

3DYNAMICS OF TROPICAL AQUATIC SYSTEMS AND REMOTE SENSING

Copyright © 2012 John Wiley & Sons, Ltd. Ecohydrol. (2012)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129



diurnal temperature range at which sensor inundation
occurred, data from iButtons located on the depth loggers
were analysed using Decision Trees (S-PLUS, 1999). With
depth data as a response variable and diurnal temperature
range as a predictor, the Decision Tree was reduced to a 2-leaf
tree and the first split was used to determine the inundation
threshold. The resulting threshold values were checked
against iButton control data to assist in validating the derived
sensor inundation threshold.

Biological measurements. Biological data used in this study
included measurements of waterbody macrophyte cover and
turbidity. The use of waterbodies by cattle, pigs, and horses
was monitored by time-lapse cameras (Pettit et al., in review).
Sampling ofmacrophytes and turbidity was conducted at nine
off-channel (Palustrine and Lacustrine) waterbody sites in
August and October 2009 and June 2010. Macrophyte
sampling included three 10-m transects, 50m apart at each
site. All aquatic plant species within each quadrant were
identified and categorized according to their structure as
emergent, submerged, floating, and marginal species, and
their projected foliage cover estimated. Turbidity measure-
ments (NTU) were made at each of the nine sites over the
three sample periods using a Hydrolab Sonde portable water
quality meter. An additional 10 Riverine open water turbidity
measurements obtained early and late in the 2008 dry season
for which it was known that the open water areas had little or
no macrophyte cover were also added to the macrophyte and
turbidity data set. Turbidity was further analysed in the
laboratory using water samples taken at the same time as the
Sonde measurements. Time-lapse cameras (Moultrie Game
Spy, EBSCO Industries, Inc., Alabaster, AL) were mounted
on riparian trees and set to automatically take a photograph of
the waterbody edge every hour. These cameras were installed
at all nine sites in August 2009, and photos were retrieved in
October 2009 and June 2010.

Field spectroradiometry. Ahandheld spectroradiometer was
used to assist in identifying potential confusion between
aquatic end members during the classification process. Field
sampled spectral end members included open water with a
range of turbidities, wet soil/mud surrounding waterbodies,
upland soils, and a range of vegetation covers associated with
the margins of the aquatic systems. Spectral sampling was

conducted using an ASD FieldSpecW Handheld Pro with a
spectral sampling range of 325–1075 nm [visible to near-
infrared (NIR)]. All spectral sampling was conducted using
the standard sampling method outlined by Pfitzner et al.
(2006) and included white reference (near Lambertain)
calibration with each measurement.

Satellite image inundation mapping

Image analysis approach. Infrared spectral data (>800 nm)
are commonly employed in spectral metrics for delineating
water features. Using the spectral metrics listed in Table T1I, we
applied an object-oriented image analysis approach to identify
the presence of surface water using the eCognitionW

Professional Version 7.0 software (Definiens Imaging,
Munich). Depth logger and temperature sensor observations
were then used to assess the accuracy of the results, and the
best performing spectral metric was selected for final water
feature delineation. For both the wet-season inundation and
dry-season isolation phases, sets of training sites for image
classification were developed by combining the Queensland
WetlandMapping and Classification aquatic systemmapping
and FPC data, and selecting sites that had less than 30% FPC,
and for water features that were large enough to sample
without edge effects. The spectral distributions for the training
sites were then analysed, and the results used to define
sigmoidal fuzzy-logic membership functions in the Definiens
image processing software. Areas with greater than 30% FPC
were classified as unknown inundation extent during
classification.

Flood inundation phase. The MODIS Level 1B Calibrated
Geolocation Data Set, which has pixel values converted to
radiance, was used as the data source for delineating flood
water during the flood inundation phase. To maximize the
resolution of the flood delineation, we used only the MODIS
250m resolution Q4red (band 1) and NIR (band 2) bands for
image segmentation and classification. The segmentation
scale factor was chosen such that the resulting image objects
were smaller than the width of large channels and
waterbodies. To minimize the influence of temporal atmos-
pheric variability during flood image captures, we performed
a ‘like-values’ target-based image calibration (Furby &
Campbell, 2001) on all MODIS bands used for flood

Table I. Infrared-based spectral metrics (and associated references) commonly employed for delineating water features.

Spectral metric Formula Reference

Near-infrared NIR (Rango & Salomonson, 1974)
(Smith, 1997)
(Frazier & Page, 2000)

Band ratio R/NIR, G/NIR (Pearson & Miller, 1972)
(Frazier & Page, 2000)
(Davranche et al., 2010)

Normalized difference (NIR�R)/(NIR +R) (Rouse et al., 1973)
Vegetation index (NDVI) (Defries & Townshend, 1994)

(Davranche et al., 2010)
Normalized difference (G�NIR)/(G +NIR) (McFeeters, 1996)
Water index (NDWI) (Davranche et al., 2010)

NIR, near infrared band; R, red band; G, green band.
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delineation. Because of the extensive flooding in the Mitchell
catchment during the wet season, the only reasonably stable
(pseudo) invariant targets are built-up settlements and
airstrips that rarely flood. These built-up settlements comprise
a range of spectral reflectance including vegetation, roads,
rooftops, and bare ground. Three of the largest built-up
settlements with airstrips, including settlements outside the
catchment but in the image extent, were used as (pseudo)
invariant targets. For each settlement, a minimum of 6
MODIS pixels were sampled for each image, and the image
deemed to be least influenced by atmospheric affectswas used
as a reference image. Clouds were delineated using a
brightness index, and proximity to cloud was used to assist
in identifying cloud shadows. MODIS cloud masks were
available but were not used because their pixel resolution was
greater than 250m.

Waterbody isolation phase. Post-flood cloud-free Landsat
TM 5 imagery was captured for March, June, and October of
2009. Landsat TM pre-processing involved conversion to
top-of-atmosphere reflectance units (Chander et al., 2009),
correction for earth-sun distance and solar zenith angle, and
dark-object subtraction (Chavez, 1989) to minimize the
influence of temporal atmospheric variability. The red,Q5 green,
and 3 IR Landsat bands were used for image segmentation,
and the segmentation scale factor was chosen such that the
resulting image objects were smaller than the smallest
waterbodies mapped in the Queensland Wetland Mapping
and Classification product (0.25 ha). A waterbody mask was
created using the Queensland Wetland Mapping and
Classification product. After image classification, the result-
ing delineated water features were clipped to the waterbody
mask to remove areas that may have been incorrectly
classified as water features such as burnt areas or topographic
and/or cloud shadows. Waterbody accuracy assessment was
only undertaken for March because after March, the water
levels were below the installation heights of all the depth
loggers and temperature sensors.

Accuracy assessment

Accuracy assessment for the flood inundation and waterbody
isolation phase was conducted using the depth logger–
temperature sensor site data. Depth logger–temperature
sensor sites were screened for FPC, and sites with greater
than 30% FPC were omitted because of uncertainty in water
detection associated with canopy cover, leaving 20 sites
(N= 20) for use in accuracy assessment. Omission, commis-
sion, and percentage agreement (i.e. number of correctly
classified sites / N) were then calculated by overlaying depth
logger–temperature sensor sites on the delineated flood and
waterbody extents for both MODIS and Landsat TM 5 image
classifications. The kappa (k) statistic, which takes into
account agreement occurring by chance (Cohen, 1960), was
used to calculate water delineation classification accuracy. A
particular issue with the behaviour and interpretation of the k
statistic is the prevalence of the identified trait in the sample
population (Feinstein&Cicchetti, 1990). Forminimization of
costs, the depth logger–temperature sensor sites were not

randomly located in the catchment but orientated to capture
the maximum flood extent. Because of the rapid recession of
flood water in the Mitchell catchment, the resulting
identification of water had a prevalence of all water at
maximum flood extent or largely no water when the flood
receded. This resulted in a prevalence bias in the estimation of
the k statistic, and thus the k statistics reported here are the
maximum (kmax) and minimum (kmin) k values (Lantz &
Nebenzahl, 1996).

Spectral macrophyte and turbidity relationships

Spectral macrophyte relationship. Microwave and optical
remote sensing have found a range of applications inmapping
aquatic vegetation (Adam et al., 2010), particularly for South
American floodplains (Costa, 2005; Hamilton et al., 2007;
Silva et al., 2008). In this study, regression analysis was
applied to develop a relationship between Landsat TM bands
and indices and to measure macrophyte cover. Macrophyte
cover was estimated from the same sites at three times.
However, time-lapse photography indicated that the biophys-
ical condition of thewaterbodies varied significantly such that
the assumption of independence of the errors in least squares
regression was met. For analysis of the influence of
macrophyte growth form (i.e. emergent, floating, submerged
and edge species) on the predictive capability of Landsat
spectral data, growth form types were regressed against
Landsat spectral data for each type individually and in all
combinations. Spectral predictor variables included Landsat
spectral bands [except thermal and IR (band 4)] and
calculations of NDVI and NDWI. Automated backward
stepwise linear regression (S-PLUS, 1999) was applied to
choose the best predictive model (based on Akaike’s
Information Criterion for goodness of fit).

Spectral turbidity relationship. A common approach in the
optical modelling of turbidity is to build empirical statistical
relationships between in situ measurements of turbidity and
spectral imagery captured by satellites at the time of in situ
measurement (Chen et al., 2007; Doxaran et al., 2002; Miller
& McKee, 2004; Ritchie et al., 1990). In freshwater systems,
waterbody imagery captured by satellites can comprise a
mixture of water of varying turbidities and varying amounts
of macrophyte cover. Field reconnaissance in the early dry
season indicated that many shallow off-channel Palustrine
waterbodies had sparse but often total water surface coverage
of macrophytes. Hence, the development of a spectral
relationship with measured turbidity must take into account
the spectral interference of macrophyte cover on the
prediction of turbidity. To address the issue of macrophyte
cover in the development of a spectral turbidity relationship,
we adopted an approach that included macrophyte cover as
well as spectral information as a predictor of turbidity.
Turbidity site measurements comprised a combination of 10
open water samples from large waterbodies with no observed
macrophyte cover and 15 samples withmeasuredmacrophyte
cover. Spectral predictor variables included Landsat spectral
bands [except thermal and IR (band 4)] and calculations of
NDVI and NDWI. Automated stepwise linear regression
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(S-PLUS, 1999) was applied to choose the best model (based
on Akaike’s Information Criterion for goodness of fit).

RESULTS

Field sampling

Physical measurements. Flows with depths above dry
season logger placements began in the Mitchell main channel
on 2 January 2009 and lasted approximately 95 days. Flows in
the main distributary channels of the Nassau and Scrutton
rivers started 10 days after themain channel flows (FigureF2 2a).
Flow depths exceeded 5m, leading to overbank discharge for
both the Mitchell and Nassau channels, with the Nassau
distributary channel showing much greater variability in flow
depth than the Mitchell channel. Flow depths exceeded 2m
for the Scrutton and, based on GPS elevation data, would
correspond to overbank discharge. Flow depth increased
rapidly for the main and distributary channels and decreased
rapidly for the distributary channels, both of which had
returned to approximately dry-season water levels 52 days
after commencement of flow. It is evident that parts of the
floodplain associated with the main Mitchell channel were
inundated for at least 70 days, and the vicinity of the Nassau
and Scrutton distributary channels was inundated for 52 days.
For the iButton temperature sensor data, the decision tree

analysis resulted in a diel temperature range threshold
indicator of inundation of approximately 3.5�C (Figure 2b).
This threshold was applied to all temperature sensor data,

and an inundation period for each temperate sensor at each
site was recorded in a database with the inundation periods
for the depth logger data. From the depth logger and diel
temperature range data, a depth of approximately 20 cm
was estimated as the depth above which the iButtons could
reliably detect the presence of water (Figure 2b). The depth
logger–temperature sensor database was then used with
flood image dates to determine if water was present at the
site at the time of image capture.

Biological measurements. The results of sampling of
macrophytes and turbidity at nine off-channel waterbody sites
in August andOctober 2009 and June 2010 showed increasing
turbidity and decreasing macrophyte cover as the dry season
progressed (Figure F33a). This finding was supported by visual
inspection of the results of time-lapse photography over the
sampling period. In contrast, the 10 additional Riverine open
water turbidity measurements obtained in 2008 showed a
decrease in turbidity from early to late dry season. All nine
of-channel waterbody sites had turbidities <20NTU in June
2010. The greatest rate of increase in turbidity occurred
betweenAugust andOctober 2009,with seven of the nine sites
experiencing greater than a doubling of turbidity (NTU) over
the 2-month period. Four of the nine sites had turbidities
>1500NTU in October 2009. Macrophyte cover showed an
inverse relationship to turbidity, with all but one site showing a
>30% increase in macrophyte cover from October 2009 to

Figure 2. (a) Examples of the 2008–2009 wet-season depth logging for the Mitchell River main channel and the Nassau and Scrutton distributary
channels, together with MODIS satellite image acquisition dates; (b) inundation depth (based on depth loggers) in relation to diel temperature variation

(based on iButtons), showing the 3.5 �C threshold determined to be an indicator of inundation.

Figure 3. (a) Average ln(turbidity) for the field sampled Mitchell off-channel waterbodies; (b) average % macrophyte cover for the field sampled
Mitchell off-channel waterbodies (dashed error bars represent standard deviation).
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June 2010 (Figure 3b). Counts of cattle numbers derived from
the time-lapse photography for off-channel waterbody sites
showed a fourfold increase in cattle numbers using the
waterbodies between August and October 2009.

Spectroradiometry

Spectroradiometry data collected for waterbodieswith a range
of turbidities indicated that, for the NIR part of the spectrum,
there was almost complete absorption for ‘low turbidity
water’, but the water absorption decreased with increasing
turbidity (FigureF4 4). For ‘high turbidity water’ (NTU>2000,
outside the range of the water quality meter), the water
absorption was greater than the other measured end members
associated with aquatic systems, except for ‘wet grey mud’
and ‘dry riparian grass’ (Figure 4). ‘Wet grey mud’ and ‘dry
riparian grass’ overlapped significantly with ‘high turbidity
water’ in the NIR part of the spectrum. From the data gathered
in this study, problems of end-member separability are likely
to occur when turbidity is greater than 2000NTU.

Satellite image inundation mapping

Flood inundation phase. Largely cloud-free MODIS flood
imagery was captured on 16 February and 3, 9, and 25March.
All image captures were on the receding limb of the
hydrograph, with the 16 February capture being just past
the peak discharge for the Mitchell and Nassau rivers
(Figure 2a), and hence was close to maximum flood extent
for 2009 (FigureF5 5). The results of the accuracy assessment
used to compare flood extents delineated using the spectral
metrics (Table I) showed that R/NIR and NDVI performed
similarly, but R/NIR performed marginally better overall.
Spectral samples were more closely clumped for R/NIR than
for NDVI, making the fuzzy-logic membership functions
easier to define for R/NIR than for NDVI. From the results of
the R/NIR flood delineation, themaximum flood extent for 16
February was 940 031 ha. The surface extent of the flood
receded rapidly, with 48% of the flooded area receding within
15 days to 371 193 ha on 9 March. By 9 March, the Nassau
and Scrutton distributary channels had receded to largely
in-channel flow (Figure 2a). By 25 March, the flood extent
had receded to 80 750 ha located mainly on the lower

floodplain and estuarine areas (Figure 5). To assist in
validating the results of the inundation mapping, we
developed a regression of MODIS-derived flooded area
against stage height for the Mitchell main channel depth
logger, which showed a strong linear relationship (R2 = 0.96).

Waterbody isolation phase. Post-flood cloud-free Landsat
5 TM imagery covering the entire catchment was captured
for 24 and 31 March, 5 and 28 June, and 18 and 27 October
2009. The results of the accuracy assessment used to
compare waterbody extents delineated using the spectral
metrics (Table I) showed that G/IR-band 5 and NDWI
performed similarly, but G/IR-band 5 performed better
overall. Total waterbody surface area declined by 89%
from March to October. Palustrine waterbodies had the
largest extent of all aquatic systems in March and then
declined rapidly by October (Figure F66). Riverine extent was
always greater than Lacustrine extent, and it declined over

Figure 4. Spectroradiometry data (% reflectance) collected in the field for
waterbodies with a range of turbidities and a range of cover types

associated with aquatic systems.

Figure 5. Map of the Mitchell catchment floodplain showing the 2009
flood inundation extents derived from MODIS imagery.

Figure 6. Dry-season surface waterbody area (ha) for March, June, and
October 2009 in the Mitchell River catchment summarized by total surface

area of each class of aquatic ecosystem.
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the dry season. Lacustrine extent declined marginally over
the dry season (Figure 6). The spatial dynamics of the
surface extent of waterbodies varied between aquatic
systems (FigureF7 7). By June, significant sections of the
Riverine systems had become disconnected, and by
October, the Riverine systems had contacted to perennial
waterbodies occupying the deeper parts of the main
channels (Figure 7). A total of 14 465 individual Palustrine
waterbodies were delineated, in contrast to 1210 Lacustrine
waterbodies. Palustrine waterbodies underwent rapid
lateral contraction, with the majority of Palustrine water-
bodies being dry by June. The surface area of the deeper
Lacustrine systems varied little over the study period.

Accuracy assessment

The results of the accuracy assessment for the flood
inundation phase developed using the depth logger–
temperature sensor inundation threshold data indicated that

NIR underestimated the flood extent and appeared to
delineate less turbid water more effectively than very turbid
water. R/NIR and NDVI performed similarly in delineating
clear and turbid flood water, with R/NIR showing a better
performance overall. For all image dates and delineation
methods, omission errors were greater than commission
errors (Table T2II). Accuracy varied between dates, with an
overall mean percentage agreement of 82% for flood
mapping. The results of the accuracy assessment for the
waterbody isolation phase indicated that individual Landsat
band ratios performed better than indices, with the band ratio
G/IR-band 5 being the most accurate in delineating
waterbodies. Percent agreement for waterbody mapping
for March was 80% (Table II).

Spectral macrophyte and turbidity relationships

Spectral macrophyte relationship. Field measurements
showed that percentage macrophyte cover (for all growth
forms combined) was inversely proportional to the natural

Figure 7. Examples of surface water spatial dynamics for aquatic systems for March, June, and October 2009 in the Mitchell River catchment. Mapped
extents of aquatic systems for the whole catchment are summarized by area in 1-km grids. The Riverine systems become increasingly disconnected as the
dry season progresses. The shallow Palustrine systems undergo rapid lateral contraction, and most are dry by the end of the dry season. The deeper

Lacustrine systems contract only marginally.

Table II. Percentage omission, commission, percentage agreement, and k statistics for 2009 flood and waterbody delineation for the
Mitchell River catchment.

Date
Omission
error, %

Commission
error, % Agreement, % kmax, % kmin, %

MODIS 02/16 10 10 80 67 55
MODIS 03/03 15 10 75 60 42
MODIS 03/09 10 5 85 74 67
MODIS 03/25 10 0 90 82 79
Landsat 03/31 0 20 80 67 55
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log of turbidity (R2 = 0.63), with macrophyte cover decreas-
ing as turbidity increased. The highest prediction accuracy
for macrophyte cover using Landsat spectral bands and
indices as predictors was found to be a combination of all
macrophyte growth forms including submerged species
(R2 = 0.67), with NDVI, NIR (band 4), and green (G) as the
best combination of predictors (FigureF8 8a). Landsat-based
catchment-wide average macrophyte cover predictions for
the Mitchell River catchment showed a decrease in cover for
Palustrine and Lacustrine waterbodies over the dry season.
Predicted macrophyte cover remained approximately con-
stant for the Riverine systems (Figure 8b). Predicted
Macrophyte cover was greatest for Palustrine waterbodies
and least for Riverine waterbodies. However, for Palustrine
waterbodies, most of the surface water supporting these
systems was gone by October (Figure 6).

Spectral turbidity relationship. The best turbidity regres-
sion models with macrophyte cover and Landsat spectral
variables as predictors were those with macrophyte cover
and NDWI as predictors (R2 = 0.89) (FigureF9 9a). Landsat-
based catchment-wide average turbidity predictions for the
Mitchell catchment showed increasing turbidity for the
Palustrine and Lacustrine systems over the dry season
(Figure 9b). The Palustrine systems had the highest

predicted average turbidity values, with the average turbidity
being approximately twice that of the Lacustrine systems.
The Riverine systems had the highest turbidity at the end of
the flood inundation phase followed by a significant
decrease in turbidity over the dry season (Figure 9b). These
results parallel the results of the field waterbody sampling
(Figure 2a and b).

DISCUSSION

Remote sensing of surface water, turbidity,
and macrophytes

This study has taken advantage of the open savanna
landscape and the long, mostly cloud-free dry season of
northern Australian savannas to utilize the rapid return
interval, greater pixel resolution choice, and the capacity to
measure water quality provided by optical remote sensing
platforms. The methods presented here are generally
applicable to northern Australia except maybe in the wetter
climates of the ‘top end’ where floodplains have more
protracted flood residence times and extensive seasonal
macrophyte cover (Finlayson, 1991), more akin to South
American floodplain ecosystems (Costa, 2005). For these
regions, further development of the method is required to

Figure 8. (a) Predicted and measured macrophyte cover; (b) predicted average % macrophyte cover for March, June, and October 2009 for the Mitchell
River catchment.

Figure 9. (a) Predicted and measured ln(turbidity (NTU)); (b) predicted average turbidity (NTU) for March, June, and October 2009 for the Mitchell
River catchment.
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incorporate radar technologies that can penetrate cloud
(more of a problem in humid climates) and dense vegetation
canopies (Hess & Melack, 2003).
The timing and duration of the wet season inundation

and the dry season are regular in wet–dry tropical regions,
although there can be inter-annual variability in the
magnitude of annual flood inundation. On the basis of a
rainfall deficit analysis of a 30-year rainfall record for the
Mitchell River catchment, 2009 was classified as a
moderately wet year. The Mitchell catchment has similar
savanna landscape characteristics and experiences a similar
climate to other regions in the wet–dry tropics of Northern
Australia. Consequently, the methods presented in this
study are largely applicable to other regions in the wet–dry
tropics of Northern Australian and potentially to other
continental savanna regions with similar landscape and
seasonal climatic characteristics, which occur in South
America and Africa.
An important issue when using optical spectral data for

predicting turbidity is associated with confusion in
estimating turbidity in clear shallow waterbodies due to
light penetration to the bottom of waterbodies (Gilvear
et al., 2007). Field survey results indicated that the Riverine
systems tend to be much less turbid than the Lacustrine and
Palustrine systems. Consequently, there is likely to be
greater error in the estimate of turbidity for the Riverine
systems due to the influence of bottom reflectance
(Bustamante et al., 2009). Similarly, there is likely to be
a larger overestimate of the macrophyte cover for the
Riverine systems than the Palustrine and Lacustrine
systems because of the greater extent and proximity of
fringing terrestrial vegetation along the Riverine systems.
Improvements in methods for assessing the seasonal
dynamics of macrophyte cover could be achieved by
utilizing a fusion of optical and RADAR technologies
(Hamilton et al., 2007; Silva et al., 2010).
The results of this study found that turbidity for the

Riverine systems is highest following the inundation phase
but then declines over the dry season. This contrasts with the
Palustrine systems and, to a lesser extent, the Lacustrine
systems, which were found to increase in turbidity and
decrease in macrophyte cover over the dry season. This
phenomenon is widespread on the Mitchell floodplain and
occurs every year (personal communication, Viv Sinnamon,
Kowanyama Aboriginal Land and Natural Resource
Management Office). This decline in water quality at the
end of dry season has also been found to occur in wet–dry
tropical savannas in Africa (Wolanski & Gereta, 2001) and
SouthAmerica (Lewis et al., 2000a, bQ6 ). Stock number counts
derived from the time-lapse cameras showed a fourfold
increase in stock numbers utilizing the waterbodies at the
end of the dry season. This increase in stock number
indicates that mechanical mixing by stock and feral animals
is likely to be a significant contributing factor to increasing
turbidity (Gereta & Wolanski, 1998). Other factors that are
likely influencing this marked increase in turbidity is the
combination of rapidly decreasing water depth and wind-
induced particulate resuspension (Hamilton & Lewis, 1990Q7 ).
Time-lapse photography showed that stock and feral pigs

were utilizing the shallow Palustrine waterbodies to forage
on the remaining macrophytes. Hence, it is likely that a
combination of poor light conditions and grazing pressure is
contributing to the reduction in macrophyte cover at the end
of the dry season.

Remote sensing methods for delineating water features
require classification accuracy assessment for method
validation. Floods, particularly short-duration floods, pose
a problem for accuracy assessment because conventional
means of accuracy assessment that utilize field sampling or
interpretation of airborne imagery are usually not available.
This study demonstrates cost-effective methods for the
ground-based spatio-temporal measurement of flood events
using depth logger–temperature sensor networks. This
approach provided significant insight into the surface
hydrology of the study area and facilitated accuracy
assessment of surface water delineation methods. This
assessment of accuracy was then applied to determine the
best-performing spectral metrics in delineating water
features in these types of landscapes, thus providing some
confidence in the future applications of these spectral
metrics in similar landscapes but where limited ground
truthing information is available.

Applications for ecosystem management

Remote sensing of the hydrological dynamics of wet–dry
tropical savannas provides important information on the
biophysical factors that influence aquatic ecosystem char-
acteristics such as connectivity, habitat quality, and primary
productivity. Inundation extent and duration is a key
controlling variable. During the flood phase, extensive areas
of the Mitchell megafan become inundated, establishing
connectivity between the Riverine systems and the flood-
plain Palustrine and Lacustrine systems. Stable isotope
analysis of aquatic foodwebs has provided evidence that this
Riverine–floodplain connectivity is exploited by large and
small fish species in the Mitchell catchment (Jardine et al.,
2012). Hence, the flood inundation mapping presented here
potentially enables the identification of floodplain areas
important for the maintenance of aquatic food webs. The
significant loss of aquatic habitat that occurs as the dry
season progresses (89% contraction of surface water in
2009) demonstrates the usefulness of seasonal inundation
mapping for identifying critical periods when and where
there is a limited availability of aquatic habitat to serve as
refugia for the freshwater biota (Sheldon et al., 2010).

The methods developed here for assessing the dynamics
of inundation, turbidity, and macrophyte cover allow
interpretation and inference of the seasonal dynamics of
aquatic ecosystem habitats. However, what is needed is an
approach to integrate these biophysical measurements such
that quantitative assessments of aquatic productivity can be
more directly derived. Evidence suggests that many aquatic
ecosystems in the wet–dry tropics of northern Australia
are nutrient poor (Brodie &Mitchell, 2005). In nutrient-poor
aquatic systems, the aquatic light environment has been
shown to be the key driver of new biomass synthesis
(e.g. benthic algae) (Karlsson et al., 2009). Approaches that
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can combine remotely sensed information on aquatic
biophysical dynamics with methods to predict aquatic light
environments could provide a means of integrating
information, such as that presented in this study, to more
directly quantify the spatio-temporal distributions of aquatic
system habitat quality and productivity.
In conclusion, the methods developed in this study

provide a basis for assessing the spatial and temporal
dynamics of biophysical factors that influence the freshwater
aquatic habitat connectivity, quality, and productivity for
wet–dry tropical aquatic systems. The results show that in
open savanna landscapes with long, mostly cloud-free dry
seasons, optical remote sensing methods can be effectively
applied to assess the biophysical characteristics and
dynamics of aquatic systems in these regions. This type of
information is important for evaluating the potential impact
of climate change and/or the implication of flow regime
modifications.
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