Using Animal Audio
for Species Detection
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Why detect species?

* We may want to

* identify presence/absence, abundance or
activity of individual species — study organism,
rare, threatened

 quantify numbers of species in an area in
relation to habitat, anthropogenic disturbance
— grazing, fire, urbanisation, etc.

* Determine effects on ecosystem “health” —
climate change, logging, agriculture, changes in
land use etc.
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Traditional Monitoring

* Fauna & vegetation surveys



raditional Audio Monitoring




Traditional Monitoring

Advantages:

— Provide highly accurate information on species
presence/absence, activity & richness

Limitations:

— Highly spatially & very highly temporally restricted
— Expensive & time consuming to get a lot of data
— Limited to expertise that is present

— Observer bias




Autonomous Recording Units
— Record Sound in situ

Advantages —
* Non-invasive
 Relatively cheap

* Collect extensive
audio data

* Permanent record

 Limited only by
storage capacity —
which continues to
iIncrease rapidly




Autonomous Recording Units
— Record Sound in situ

Disadvantages —

» Restricted to species '* "Ff
that make some kind | s
of noise |

 Birds, frogs, insects,
some fish, some
reptiles, many
mammals

* There Is so much
data analysing it
becomes a problem!




Species Detection — Individual
Species

* Humans listen & recognise calls —
subsampling in time

« Songscope-type recognisers

 Human-in-the-loop combinations




What's better — ARUs or
traditional methods?

« Autonomous Recording Units (ARUs) versus point
counts to quantify species richness and composition of
birds in temperate interior forests.

« Short-term monitoring, point counts may probably
perform better than ARUs, especially to find rare or
quiet species.

* Long-term (seasonal or annual monitoring) ARUs a
viable alternative to standard point-count methods

Klingbeil & Willig. 2015. Peerd 3:€973; DOI 10.7717/peerj.973




What's better — ARUs or
traditional methods?

 This study used ARUs almost exactly like point counts

 Human observers at exactly the same time & place as
recorders perform better — distant calls & difficult to
hear calls, visual recognition

« Used Songscope™ to ID calls

» Even using this method — ARUs larger samples over
time produced better samples than human visits

Klingbeil & Willig. 2015. Peerd 3:€973; DOI 10.7717/peerj.973
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Species Detection — Individual
Species

 Humans listen & recognise calls — subsampling in time

« Songscope-type recognisers

 Human-in-the-loop combinations




Species Detection — Individual
Species

Songscope-type automated “recognisers”

» possible based on several different kinds of
algorithms: fuzzy logic, dynamic time or Hidden
Markov models, oscillation detection, event or
syntactic pattern recognition

* Speech recognition models are not very successful
on environmental recordings because of their need
for limited background noise

« Animal calls vary more than human speech

» Variable success dependent on type of background
noise

 Need to be trained for call & environment
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Species Detection — Individual
Species

* Human-in-the-loop combinations
— best outcomes at the moment




NN Recogniser
FindEvents Like This
(FELT) \

Library of Calls




Indices of Ecosystem Health

Ecoacoustics, Soundscape Ecology

— Use Acoustic Indices

— Characterise animal acoustic communities,
habitats, overall ecological state




Acoustic Signatures jg L

* Natural soundscapes should be
habitat specific.

- Ambient sound in different types s
of forest was recorded R

« Used digital signal techniques
and machine learning algorithms

* Even fairly similar habitat types
have specific acoustic signatures |
distinguishable by machine |




Acoustic Complexity Index

« ACI highlights and quantifies complex biotic noise (ie. bird
calls) while reducing effects of low-variability human noise
(ie. airplane engines) Sueur et al. 2014. Acta Acustica
100:772-81.
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Fig. 3. Spectrogram representing a typical scene of the airplane noise overlapping the natural soundscape.



Can soundscape reflect landscape
condition?

« Soundscape patterns vary with
landscape configuration and condition

* 19 forest sites in Eastern Australia

3 indices soundscaF = landscape
characteristics, eco oglcal condition,
and bird species richness

 acoustic entroFy ), acoustic
evenness (AEI), normalized difference
soundscape mdex (NDSI)

. Anthrophon%/ was inversely
correlated with biophony and
ecological condition

* Bio hon){ positively correlated with
ecological condition

|1:t51IIer et al. 2015. Ecological Indicators 58:207- ’



Overall Signatures Not For
Species Detection




Species Richness Applications

* We want to know not only that a system
IS rich or diverse, or different from other
systems, but which species are
present...




How to bridge the gap?

Time scale = seconds Time scale = days > months > years
BIO-ACOUSTICS <€ » ECO-ACOUSTICS
Single vocalisations Soundscape ecology

Species recognition Ecosystem processes



Combination Approaches

 Estimating avian species richness from very long
acoustic recordings.

» Used acoustic indices to summarise the acoustic
energy information in the recording

 Randomly sampled 1 minute segments of 24
hour recordings - achieved a 53% increase in
species recognised over traditional field surveys

« Combinations of acoustic indices to direct the
sampling - achieved an 87% increase in species
recognized over traditional field surveys

'1I'c1)\évsey et al. 2014. Ecological Infomatics 21: 110-



Sampling?

Greedy sampling with prior knowledge of all species present
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 Different samplirjlg protocols listening to 1 minute samples of a 5-da1y real
sound sample - Towsey et al. 2014. Ecological Infomatics 21: 110-119.



Many Indices

« Average signal amplitude (= H[s])

« Background noise « Entropy of spectral maximum
« Signal-to-noise ratio (SNR) (= H[m])

« ACI « Entropy of spectral variance
« Acoustic activity (= H[v])

« Count of acoustic events « Spectral diversity

* Avg duration of acoustic events < Spectral persisitence
« Entropy of signal envelope

(temporal entropy = Ht]) All defined in Towsey et al. 2014,
« Mid-band activity Ecological Infomatics 21: 110-119.

 Entropy of average spectrum




Many Indices

« Average signal amplitude (= H[s])

« Background noise « Entropy of spectral maximum
« Signal-to-noise ratio (SNR) (= H[m])

* ACI » Entropy of spectral variance
« Acoustic activity (= H[v])

« Count of acoustic events « Spectral diversity

* Avg duration of acoustic events ¢ Spectral persisitence
« Entropy of signal envelope

(temporal entropy = Ht]) All defined in Towsey et al. 2014,
« Mid-band activity Ecological Infomatics 21: 110-119.

* Entropy of average spectrum
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Visualisation of Large-scale Recordings —
Using Indices to Reduce “Noise”

.
-
_
=
- | ——— —
.

H | |

LR e

Fha "4 T
uﬂuw‘;mw

ACI H(t) CVR False-colour

Figure 3: The false-color spectrogram on the right was obtained by combining the ACI, 1-
H[t] and CVR spectrograms n red. green and blue colors respectively.




A visual approach to automatic
classification from recordings in the
wild

« A multi-instance, multi-label framework on bird vocalizations
to detect simultaneously vocalizing birds of different
species.

* Integrates novel, image-based heterogeneous features
designed to capture different aspects of the spectrum.

* monitor 78 bird species, 8 insects and 1 amphibian (total =
87 species under challenging environmental conditions)

* The classification accuracy assessed by independent
observers = 91.3% (note not compared to traditional
surveys)

Potamitis, |. 2014. PLoS1 9(5):e96936



lllustration of Sound Interference
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Figure 3. Spectrogram corresponding to a recording with 3 partially overlapping bird species (trainfile005 in NIPS20134B
database). The lower part of the spectrum is coloured by the sound of running water and strong wind.
doi:10.1371/journal pone0096936.g003
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Figure 4. Detected spectrogram blobs of Fig. 3. Derivations and enumeration of the masks. Axis are enumerated according to their pixel index.
doi:10.1371/journal pone0096936.9004



Conclusions

* ARUs could be extremely valuable to collect a massive
amount of data on species presence/absence, richness

« Massive amount of data is a double edged sword

* ARUs are especially good for rare or (acoustically)
hard-to-detect species

* There is a great deal of research to be done in how
best to analyse this data




One more thing

 Caller-listeners, rather than just listeners may increase
the probability that a rare thing will call

e Such an invention increases the probability of calling
by rare species

* Increases detectability of rare species, because then
we know WHEN to look for their calls in long
recordings




Current work: Detecting
Invasive Species

 Detecting the arrival of invasive cane toads on
Groote

* Listening & Calling for toads

- Working with the Anindilyakwa
Land Council 3:5 i o

* Hoping not to get an answer!






Monthly Average
Spectrogram

. Averag_in_g v_alues of
acoustic |_ndlces over
consecutive days

* More ‘washed out’
appearance due to
averaging

* But seasonal changes in
acoustic landscape are
clearly visible

* Morning chorus strongest
during late winter and
early spring

* Night-time Orthopteran LS
sounds are minimal -
during winter months Ry s i S 21




