
2 
 

 OCEANS & ATMOSPHERE FLAGSHIP 
 

Remote sensing methods to map and monitor 
the condition of coastal habitats and other 
surrogates for biodiversity  
Part B: Water quality mapping of the Van Diemen Gulf 

 
Thomas Schroeder, Vittorio Brando, David Blondeau Patissier, Lesley Clementson, Janet Anstee,       
Nandika Thapar and Edward King 

 

Image Processing and Analysis Report 
March 2015 
Prepared for the NERP Northern Australia Hub  

 

 

 
 

  

 



3 
 

Citation 
Schroeder, T., Brando, V., Blondeau Patissier, D., Clementson, L., Anstee, J., Thapar, N. and King, E. (2015), 
Remote Sensing Methods to map and monitor the condition of coastal habitats and other surrogates for 
biodiversity, Part B: Water quality mapping of the Van Diemen Gulf, Image Processing and Data Analysis 
Report, CSIRO Oceans & Atmosphere Flagship, Australia. 

Copyright and disclaimer 
© 2015 CSIRO To the extent permitted by law, all rights are reserved and no part of this publication 
covered by copyright may be reproduced or copied in any form or by any means except with the written 
permission of CSIRO. 

Important disclaimer 
CSIRO advises that the information contained in this publication comprises general statements based on 
scientific research. The reader is advised and needs to be aware that such information may be incomplete 
or unable to be used in any specific situation. No reliance or actions must therefore be made on that 
information without seeking prior expert professional, scientific and technical advice. To the extent 
permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for 
any consequences, including but not limited to all losses, damages, costs, expenses and any other 
compensation, arising directly or indirectly from using this publication (in part or in whole) and any 
information or material contained in it. 

Cover photographs 
Left: MODIS Aqua image covering the Van Diemen Gulf region (Courtesy NASA). Right: Instrumentation to 
measure water optical properties (Courtesy Michael Lawrence Taylor).  



4 
 

Contents 

1 Introduction .......................................................................................................................................... 7 

1.1 Project objectives ........................................................................................................................ 7 

1.2 The regional environment of the Van Diemen Gulf.................................................................... 8 

2 In situ optical observations ................................................................................................................... 9 

2.1 Inherent optical (IOP) measurements ........................................................................................ 9 

2.2 Biogeochemical measurements ................................................................................................ 10 

2.3 Apparent optical (AOP) measurements .................................................................................... 10 

2.4 Summary data overview ........................................................................................................... 10 

3 Remote sensing observations ............................................................................................................. 11 

3.1 The MODIS Aqua sensor ........................................................................................................... 11 

3.2 Atmospheric correction ............................................................................................................ 12 

4 Inverse in water algorithm parameterization ..................................................................................... 13 

4.1 Algorithm approach to address optical complexity and seasonal variability ........................... 13 

4.2 Context  Algorithm approach for the Great Barrier Reef ........................................................ 13 

4.3 Extension of the algorithm approach to the Van Diemen Gulf ................................................ 14 

5 Results and discussion ......................................................................................................................... 23 

5.1 Product evaluation .................................................................................................................... 23 

5.2 Seasonal variability ................................................................................................................... 24 

5.3 Spatial variability ....................................................................................................................... 26 

6 Conclusions ......................................................................................................................................... 28 

7 Recommendations .............................................................................................................................. 28 

Appendix A Data format description & repository ...................................................................................... 30 

Appendix B Symbols and abbreviations ....................................................................................................... 31 

References ........................................................................................................................................................ 33 
 

 

  



5 
 

Figures 
Figure 1 Satellite and in situ data processing flow chart of this study .............................................................. 8 

Figure 2 Location of measurement sites where optical and biogeochemical data was collected during the 
2012 wet and 2013 dry season field voyages (N=58). ........................................................................................ 9 

Figure 3 Swath illustration of MODIS (A) and polar orbiting principle of the satellite scanning the upward 
reflected solar irradiance of the Earth’s surface from which geophysical products can be derived (B). 
Image credits: NOAA. ....................................................................................................................................... 11 

Figure 4 MODIS Aqua true colour images covering the Van Diemen Gulf and Darwin Harbor regions on 
(a) 2 April 2012 (wet season) and (b) 14 Sep 2013 (dry season) illustrating the optical complexity and 
contrasting seasonal differences in water colour. ........................................................................................... 12 

Figure 5 Conceptual diagram of the adaptive Linear Matrix Inversion approach adopted for the retrieval 
of concentrations and IOPs in the Van Diemen Gulf from MODIS Aqua data (reproduced from Brando et 
al. 2012). ........................................................................................................................................................... 14 

Figure 6 Summary of optical complexity for the Van Diemen Gulf waters, SIOP parameters for the 
stations used in the algorithm development. The twelve panels reproduce figures from Blondeau
Patissier et al. (2009); green boxes and red diamonds represent stations acquired during the wet and dry 
season respectively. ......................................................................................................................................... 15 

Figure 7 Optical closure between the simulated and measured above water remote sensing reflectance 
(Rrs) for 12 stations sampled during the 2013 dry season fieldwork. The black lines represent the 27 
Hydrolight simulations performed for each station; the three blue lines present the range of measured 
spectra (minimum, median and maximum). .................................................................................................... 16 

Figure 8 Comparison between retrieved and simulated bulk IOPs. The figure is organized in five rows 
(the model parameter sets), and in two columns (a and bb). The scatterplot colors indicate density of 
points from blue (low density) to dark red (high density), the dotted line is the 1 1 line. .............................. 18 

Figure 9 Comparison between retrieved and simulated concentrations. The figure is organized in five 
rows (the model parameter sets) and three columns (CCHL, CCDOM, and CNAP). In the scatterplot colors 
indicate density of points from blue (low density) to dark red (high density), the dotted line is the 1 1. ...... 19 

Figure 10 Accuracy of the retrieval of IOPs and concentrations: Taylor diagrams summarising the 
inversion performance of the four adaptive paramerizations (VDGD, VDGw, VDGDW and VDGS) as 
compared to the reference inversion (OWNLEE).The figure is organized in four rows (bulk IOPs, PHY, 
CDOM, and NAP properties), and in three columns (a, bb, and concentrations). Symbols: Black 
star=OWN, green box=VDGW, red diamond=VDGD, blue circle=VDGDW, purple triangle=VDGS ...................... 20 

Figure 11 Distribution of accuracy of the retrieval of SIOPs shape parameters for aLMI. The figure is 
organized in four rows (four model parameter sets: VDGD, VDGw, VDGDW and VDGS), and in four columns 
(a*

PHY(440)/a*
PHY(676), SCDOM, SNAP, and YNAP). The blue histogram presents the distribution of the SIOP 

parameters in the input dataset and the dark bars represent the number of solutions for which the SIOP 
shape and amplitude parameter set used in the forward simulation were correctly selected during the 
aLMI minimization process. .............................................................................................................................. 21 

Figure 12 Distribution of accuracy of the retrieval of SIOPs amplitude parameters for aLMI. The figure is 
organized in four rows (four model parameter sets: VDGD, VDGw, VDGDW and VDGS), and in four columns 
(a*

PHY(440), a*
NAP, bb

*
NAP, bbP(555)/bP(555)). The dark bars represent the number of solutions for which 

the SIOP shape and amplitude parameter set used in the forward simulation were correctly selected 
during the aLMI minimization process. ............................................................................................................ 22 

Figure 13 Results of the match up analysis comparing satellite retrieved water quality against ground 
measurements of CHL, TSS or NAP and CDOM. Match up areas are 3 by 3 pixels centred at the locations 
of the ground observations with a maximum time difference of ±4 hours (top) and ±3 hours (bottom 
panels). ............................................................................................................................................................. 23 



6 
 

Figure 14 Temporal variability of key water quality parameters calculated from daily MODIS Aqua 
imagery at station D08 to illustrate their temporal variability. Data was extracted for a 3x3 pixel box. 
Panels from top to bottom: Total suspended solids, Chlorophyll a, CDOM absorption and number of 
valid pixels for each extraction. Solid lines represent averaged data using a 3 day window. ......................... 25 

Figure 15 Spatial distribution of remotely sensed water quality during wet season (2 April 2012) and dry 
season (14 Sep 2013) conditions. Noted the different concentration ranges used for NAP. .......................... 27 

 

Tables 
Table 1 Range of quality controlled optical and biogeochemical measurements collected during the 2012 
and 2013 field voyages. .................................................................................................................................... 10 

 

 



7 
 

1 Introduction 

There is a paucity of biological data across the remote and inaccessible northern Australian coastline that 
currently constrains bioregional planning processes, development approvals and, ultimately, the 
conservation of biodiversity. Biophysical factors such as water depth, light availability and water quality are 
important determinants of coastal and marine biological communities and may be used as effective 
surrogates (Schroeder et al., 2012, Kennedy et al., 2012) in biodiversity assessments.  

The natural resource management of the Van Diemen Gulf encompassing Kakadu National Park would 
benefit from long term monitoring of key biophysical parameters where often little is known about 
biodiversity and ecosystem processes. Areas that are potentially transitional in the face of climate change 
or habitat refuge can be effectively identified and monitored from satellite observations. However, the 
optical complexity and large tidal range of the Van Diemen Gulf’s coastal waters have limited the 
understanding of the region’s water quality and its spatial and temporal variability. The remote location of 
this region also makes the acquisition of further knowledge of this particular marine system by 
conventional (ground based) sampling methods difficult. However, recent developments in the area of 
physics based water quality retrieval using satellite remote sensing allow more frequent and accurate 
large scale water quality estimates from space than was previously possible. Remote sensing provides a 
cost effective monitoring and trend assessment tool that can assist coastal zone management especially in 
remote and data sparse regions such as the Van Diemen Gulf. 

1.1 Project objectives 

This report documents the adaptation and evaluation of a regional coastal water quality algorithm for the 
Van Diemen Gulf region with the main objective to provide an eleven year time series of key water quality 
parameters from daily observations of the Moderate Resolution Imaging Spectrometer (MODIS Aqua) 
satellite. However, the application of this data to derive trends and to quantify change for specific regions 
that can be linked to other biodiversity assessments was out of scope of this project.  

The production of MODIS data was performed at Australia’s high performance National Computational 
Infrastructure (NCI, http://nci.org.au) and utilized archiving and processing facilities developed and 
supported by the Integrated Marine Observing System (IMOS, http://www.imos.org). The retrieval of water 
quality from space is a multi stage process with the project specific workflow outlined in Figure 1. Daily 
MODIS Level 0 data acquisitions (e.g. raw counts) covering the study region were processed using NASA’s 
SeaWiFS Data Analysis System (SeaDAS) software package version 7.0 (Fu et al., 1998). The most up to date 
calibration tables and other auxiliary inputs (e.g. meteorological information) were incorporated into the 
processing with SeaDAS to account for sensor degradation and to compute calibrated and geo located 
radiances at Top of Atmosphere (TOA) as Level 2 outputs. A total number of 6,057 daily MODIS Aqua files 
were processed from Level 0 to Level 2 quality using SeaDAS. These were subsequently re projected from 
satellite swath geometry to an equal rectangular grid (445 x 550 pixels) covering 130.5 E to 133 E in 
longitude and 11 S to 13 S in latitude (Figure 2). The re projected data were further processed using 
CSIRO’s Artificial Neural Network (ANN) atmospheric correction method (Schroeder et al., 2007) and its 
adaptive Linear Matrix Inversion (aLMI) in water retrieval algorithm (Brando et al., 2012).  

Parameterization of the aLMI for the Van Diemen Gulf region was achieved with ground observations 
collected during dedicated dry and wet season field voyages. The success of such an approach has largely 
been demonstrated in previous instances (Brando et al., 2012, Brando et al., 2014, Schroeder et al., 2012, 
King et al., 2014), however algorithm parameterization was not possible until recently because of the lack 
of in situ measurements. The optical properties and concentrations presented in this report are the first to 
have been collected in the Van Diemen Gulf region. Ground observations were also used to evaluate the 
accuracy of remotely sensed water quality products, such as chlorophyll a (CHL), total suspended solids 
(TSS) and coloured dissolved organic matter (CDOM).  
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Figure 1 Satellite and in situ data processing flow chart of this study 

Specific project outputs are: 

 A first bio optical and biogeochemical characterization of the Van Diemen Gulf coastal waters 
capturing wet and dry season conditions. 

 A validated time series of remotely sensed water quality for the Van Diemen Gulf covering 11+ 
years (July 2002 – September 2013). 

 This report describing data acquisition, processing and analysis. 

1.2 The regional environment of the Van Diemen Gulf 

The Van Diemen Gulf is a semi enclosed bay (~16,000 km2) with two narrow passages (~25 30 km wide), 
one to the North into the Arafura Sea and a second to the West into the Beagle Gulf (Figure 2). It is a 
dynamic marine environment that is influenced by a tropical monsoonal climate, shallow depths (<20m) 
and strong tidal currents (mean spring tides range from 4 to 6 m). Five major river catchments surround the 
Van Diemen Gulf: the West, South (10,000 km2) and East Alligator rivers on the East and the Mary (8,000 
km2) and the Adelaide rivers (638 km2) on the west. While the western catchments have been actively used 
for agricultural purposes, mainly cattle grazing, the eastern catchments are mainly set aside for 
conservation (indigenous lands and national parks, such as the world heritage listed Kakadu National Park). 

Monsoonal rainfall (~1,700 mm·yr 1)1 generates large quantities of freshwater runoff that enter the coastal 
waters during the wet season via the surrounding catchments. The dry season spans from May to October, 
while the wet season extends from November to April, during which more than three quarter of the annual 
rainfall occurs1. Cloud cover severely limits water quality remote sensing during the wet season months 
(see Figure 14). Monsoonal winds are mostly north westerly, and vary in intensity, while south easterly 
trade winds predominate during the dry season. These winds may significantly enhance resuspension of 
suspended sediments when acting in phase with tidally induced currents. 

The Van Diemen Gulf remains largely understudied and literature on in situ optical measurements linked to 
remote sensing of coastal water quality does not exist to our knowledge.  
                                                            

 
1BOM Bureau of Met., 73 year statistics (1941 1974) http://www.bom.gov.au , Climate statistics for Australian locations: Darwin Airport 
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2.2 Biogeochemical measurements 

Surface water ( 2m) samples were collected concurrent to the IOP measurements following standard 
protocols for coastal waters (Tilstone et al., 2002) and were immediately filtered onboard and stored 
appropriately for further analysis in the laboratory at a later time. Total chlorophyll a samples were filtered 
onboard through Whatman GF/F glass fibre filters (pore size ~0.7 m) and stored in cryovial containers in 
liquid nitrogen. Coloured dissolved organic matter (CDOM) was filtered through a Whatman ANODISC filter 
(pore size 0.2 μm) and stored in glass bottles. Per 100 ml CDOM filtrate, 0.5 ml of a solution of sodium azide 
(10 g L 1) was added to preserve the samples that were then stored in cool and dark conditions until 
analysis. Total suspended solids were filtered onto Whatman GF/F glass fibre filter (pore size 0.7 m). In the 
laboratory phytoplankton pigments were analysed by High Performance Liquid Chromatography (HPLC) 
using the method of Clementson (2013) and concentrations of total suspended solids were determined by 
gravimetric analysis. In addition, algal, non algal and coloured dissolved organic (CDOM) absorption was 
measured, using a dual beam UV/VIS spectrophotometer fitted with an integrating sphere. The spectral 
slope of CDOM was computed by non linear regression to fit the absorption coefficients between 400 and 
700 nm. A more detailed description of the methods for all these measurements can be found in 
Oubelkheir et. al (2014). 

2.3 Apparent optical (AOP) measurements  

Light attenuation profiles were measured at each station using a Satlantic free falling optical profiler 
(http://satlantic.com). Subsequently the profiler was deployed with a flotation collar to acquire 
measurements of the upwelling radiance field just below the water surface and the down welling 
irradiance above water. An additional down welling irradiance sensor was mounted up high on the vessel 
which provided a more stable platform. The radiance and irradiance data was quality controlled by filtering 
for sensor tilts less than 5 degrees and converted into above water reflectance. The reflectance data was 
used to assess the suitability of the IOP data for algorithm parameterization by quantifying optical closure 
as described in section (4.3.2). 

2.4 Summary data overview 

Table 1 Range of quality controlled optical and biogeochemical measurements collected during the field voyages. 

  Dry season (2013) Wet season (2012) 

Variable N Min Max Mean Stdev N Min Max Mean Stdev

CHL [mg m 3] 29 0.33 2.79 0.86 0.45 11 0.33 1.61 0.85 0.37

TSS [g m 3] 29 2.69 482.77 56.52 87.54 14  1.74   8.33 4.28  1.84

a CDOM 440 [m 1] 28 0.05 0.70 0.16 0.13 14 0.08   0.85 0.28  0.25

S CDOM [m
1] 28 0.005 0.017 0.013 0.003 14 0.009 0.017 0.014 0.001

a PHY (440) [m 1] 29 0.023 1.077 0.104 0.204 11 0.033 0.088 0.052 0.018

a PHY* (440) [m2 mg 1] 29 0.034 0.386 0.090 0.077 11 0.025 0.125 0.069 0.031

a NAP (440) [m 1] 29 0.045 5.420 0.498 1.088 11 0.026 0.198 0.077 0.051

S NAP [m
1] 29 0.011 0.019 0.014 0.002 11 0.012 0.015 0.014 0.001

b b (555) 22 0.031 0.736 0.194 0.263 12 0.014 0.323 0.065 0.085

YNAP 22 0.233 1.731 0.633 0.409 12 0.442 0.931 0.695 0.153

Temperature [ C] 23 26.3 28.7 27.6 0.7 11 29.5 31.2 30.1 0.5

Salinity 23 34.3 35.1 34.6 0.3 11 19.0 32.8 28.9 4.4

Secchi [m] 29 0.3 4.0 2.1 1.1 14 1.5 5.5 2.8 1.0
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4 Inverse in water algorithm parameterization 

4.1 Algorithm approach to address optical complexity and seasonal 
variability 

The goal of the satellite data processing system is to retrieve the inherent optical properties (IOPs) of the 
water, and relate them to the physical constituents, by analysis of the atmospherically corrected 
reflectance spectra at the water surface.   

As shown in Section 2, the field activities demonstrated a large variability in optical properties of the 
dissolved and particulate matter in the Van Diemen Gulf between the dry and wet seasons (see Table 1). In 
this study the approach previously developed by CSIRO to accurately derive water quality in the Great 
Barrier Reef (GBR) lagoon waters has been adopted and parameterised for the optical conditions of Van 
Diemen Gulf. 

4.2 Context  Algorithm approach for the Great Barrier Reef 

To improve the accuracy of water quality retrievals from MODIS Aqua data in GBR Lagoon coastal waters, 
CSIRO developed an adaptive approach that extends a linear matrix inversion technique developed by Hoge 
and Lyon (1996). The adaptive linear matrix inversion (aLMI) technique simultaneously estimates the IOPs 
and concentrations of CHL, non algal particulate matter (NAP) and CDOM from atmospherically corrected 
spectra (Brando et al. 2012, King et al. 2014). 

This adaptive implementation of the LMI  was specifically developed  to  incorporate regional and seasonal 
knowledge of variability in the specific inherent optical properties for concentration, specific light 
absorption and scattering encountered in GBR coastal waters (Brando et al., 2008; Brando et al., 2014; 
Brando et al., 2012). The aLMI method uses the below water remote sensing reflectance spectrum rrs( ) of 
MODIS bands 8 15 (412 748 nm) as input to a semi analytical model developed by Gordon et al. (1988) to 
simultaneously derive the three optically active constituents in an algebraic manner. One of the major 
weaknesses of the LMI is the difficulty of parameterising a stable spectral shape for each SIOP to reflect the 
natural variability (Lyon and Hoge 2006). In aLMI, to incorporate regional knowledge of specific IOPs, the 
inversion of imagery is performed while varying the SIOP shape factors through a small group of 
predetermined combinations, i.e. the candidate model parameter sets (Brando et al., 2012). Each candidate 
model parameter set corresponds to a naturally occurring set of SIOP shape and amplitude factors (a*

PHY( ), 
SCDOM, a*

NAP(440), SNAP, bb
*

PHY(555), and YPHY , bb
*

NAP(555) and YNAP see Table 1 of Brando et al. 2012 for 
precise definitions) estimated from a suite of in situ measurements and samples collected concurrently at a 
sampling station during a field campaign, hence each of these model parameter sets is time, location and 
water type specific. By performing the spectral inversion only for a limited number (L, Figure 5) of naturally 
occurring model parameter sets, unnatural (or highly unlikely) combinations of the SIOP shape and 
amplitude factors are avoided (Brando et al., 2012). 

In aLMI the model parameter set, the IOPs and concentration values associated with the best optical 
closure (rrs input  rrs model) are retained as the optimal solution for each inverted spectrum (Figure 5). 
With this approach, no a priori assumptions are made on the occurrence of a specific water mass at any 
given location during the inversion of satellite imagery. A more detailed description of the algorithm, 
together with complete definition of symbols, is provided in Brando et al. (2012). A description of the pre
operational implementation of the algorithm for monitoring GBR water quality is provided in King et al. 
(2014). 
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Figure 6 Summary of optical complexity for the Van Diemen Gulf waters, SIOP parameters for the stations used in the 
algorithm development. The twelve panels reproduce figures from Blondeau Patissier et al. (2009); green boxes and 
red diamonds represent stations acquired during the wet and dry season respectively. 
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4.3.2 OPTICAL CLOSURE 

In the literature, one approach to assess the uncertainty associated with the SIOP amplitude and shape 
factors is to evaluate the optical closure between modelled and measured Rrs spectra (e.g. Brando & Dekker 
2003, Giardino et al., 2007, Chang et al., 2003). Figure 7 presents an example of this analysis for selected 
sites of the Van Diemen Gulf. Measured IOPs were used in a radiative transfer model to simulate the 
corresponding above water reflectance at each site, which were then compared against in situ observed 
reflectance as reference data. Whilst for most stations a good match in terms of shape and intensity could 
be achieved, larger deviations occurred at VDGD8 and VDGD10 where the shape was found to be very 
similar but the intensities did not match. This may be attributed to uncertainties associated with the IOPs 
and concentrations used to estimate the SIOPs shape and amplitude factors, which were the inputs for the 
radiative transfer modelling, but also to those associated with the radiometric (AOP) measurements. In 
dynamic and optically complex systems such as Van Diemen Gulf short term variability due to strong tidal 
currents may explain differences between modelled and observed radiometry, especially for those sites 
where larger time differences between IOP and AOP measurements occurred (up to 30 minutes difference). 
However, it remains difficult to attribute the lack of optical closure to one of the data sources. The limited 
number of data points available for this modelling activity was also considered, hence all data was used for 
further analysis.  

 

Figure 7 Optical closure between the simulated and measured above water remote sensing reflectance (Rrs) for 12 
stations sampled during the 2013 dry season fieldwork. The black lines represent the 27 Hydrolight simulations 
performed for each station; the three blue lines present the range of measured spectra (minimum, median and 
maximum). 
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4.3.3 ALMI PARAMETRIZATION ADDRESSING SEASONAL VARIABILITY 

Based on the seasonal variability in optical properties from the field data (Figure 6), four adaptive 
parameterizations for aLMI were defined, i.e. four groups of predetermined candidate model parameter 
sets were selected. Two adaptive parameterizations were derived by using the complete sets of SIOP shape 
and amplitude factors in each of the two seasons (VDGD and VDGW for the dry and wet season, 
respectively). The third adaptive parameterization was composed of all 22 complete sets of SIOP shape and 
amplitude factors from the two field campaigns (VDGDW). A fourth adaptive “seasonal” parameterization 
(VDGS) was devised by running the inversion of dry season spectra with dry season parameters while the 
wet season spectra were inverted with wet season parameters.  

4.3.4 SENSITIVITY ANALYSIS OF ALMI PARAMETRIZATION 

To assess the performance of the aLMI in VDG waters, the aLMI spectral inversion was applied to the 
simulated MODIS reflectance dataset by using the four model parameter sets defined above representing 
measurements performed in different seasons in this coastal system. Furthermore, to assess the 
uncertainties specifically introduced by the aLMI procedures and to set a benchmark for the aLMI 
inversions for the four parameterizations, the inversion for each Rrs spectrum of the simulated reflectance 
dataset was parameterized with the SIOP shape and amplitude parameters used in the forward simulation 
(OWN). Figure 8 presents the comparison between retrieved and input bulk IOPs for all four 
parameterizations (VDGD, VDGw, VDGDW and VDGS), while Figure 9 presents the comparison between 
retrieved and input concentrations. To summarize the accuracy of the retrieval of the four adaptive 
paramerizations Figure 10 presents the Taylor diagrams of bulk and apportioned IOPs, as well as  
concentrations. The Taylor diagrams represent three different statistics simultaneously: the normalized 
standard deviation, as the along axis of the polar coordinate plot, the correlation coefficient, as the angular 
position, and the unbiased Root Mean  Square Difference (RMSD), as the distance between the model 
point and the reference comparison point (Taylor, 2001, Jolliff et. al 2009). 

Consistent with the findings of Brando et al. (2012), the benchmark parameterization provides very 
accurate retrieval of the bulk IOPs (R2>99%, Figure 8, Figure 10) as well as the concentrations of CNAP 

(R2>99%, Figure 9, Figure 10), while CCHL proves difficult to retrieve in the optically complex VDG waters 
(R2=62%), as phytoplankton contributes only ~5 20% to the absorption budget (Brando et al 2012, Lee et al 
2010). 

For the VDG four parameterizations, the retrieval of aCDOM+P and bbP is very accurate (aCDOM+P:R2>96 98%; bbP: 
R2>99%), even while the total absorption shows some deviations from the 1:1 line, particularly for VDGD 
and VDGw. For the retrieval of the concentrations, large deviations from the 1:1 line were observed (CCHL: 
R2=1 49%; CCDOM: R2=18 96%; CNAP: R2=6 46%;). The accurate retrieval of CCDOM for VDGD, VDGDW and VDGS 
reflects the ability of aLMI to accurately apportion the total absorption to the optically active constituents 
(OACs) for these parameterizations, while the lower accuracy for CCHLand CNAP is due to the erroneous 
selection of the SIOP amplitude parameters relating concentrations and apportioned IOPs during the aLMI 
inversion process.  

Figure 11 and Figure 12 present the histograms of the relative errors in the retrieval of the selected SIOP 
shape and amplitude parameters for the four aLMI parameterizations. It is important to note that due to 
the strong seasonal differences in the processes controlling the IOPs, the two single season 
parameterizations (VDGD and VDGW) miss some of the amplitude and shape factors used in the whole 
simulated set (Figure 6). Thus the distribution of the parameters selected during aLMI inversion process 
shows some gaps. This is particularly evident for the four shape parameters (a*

PHY(440)/a*
PHY(676), SCDOM, 

SNAP, and YNAP) in VDGW (Figure 11) and the NAP amplitude parameters (a*
NAP, bb

*
NAP, bbP(555)/bP(555)) for 

VDGD and VDGW (Figure 12). This explains the inaccurate apportioning of the bulk IOPs to the OACs 
observed for VDGW (Figure 9, Figure 10) and the inaccurate retrieval of CCHL and CNAP for VDGD and VDGW 

(Figure 9, Figure 10). The “complete” and the “seasonal” parameterizations (VDGDW and VDGS) show a good 
distribution of the shape and amplitude parameters (Figure 11 and Figure 12), with the “seasonal” 
parameterization VDGS selecting more often the whole SIOP shape and amplitude parameter sets used in 
the forward simulation (N=245). 
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Figure 8 Comparison between retrieved and simulated bulk IOPs. The figure is organized in five rows (the model 
parameter sets), and in two columns (a and bb). The scatterplot colors indicate density of points from blue (low 
density) to dark red (high density), the dotted line is the 1 1 line. 
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Figure 9 Comparison between retrieved and simulated concentrations. The figure is organized in five rows (the model 
parameter sets) and three columns (CCHL, CCDOM, and CNAP). In the scatterplot colors indicate density of points from blue 
(low density) to dark red (high density), the dotted line is the 1 1. 
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Figure 10 Accuracy of the retrieval of IOPs and concentrations: Taylor diagrams summarising the inversion 
performance of the four adaptive paramerizations (VDGD, VDGw, VDGDW and VDGS) as compared to the reference 
inversion (OWNLEE).The figure is organized in four rows (bulk IOPs, PHY, CDOM, and NAP properties), and in three 
columns (a, bb, and concentrations). Symbols: Black star=OWN, green box=VDGW, red diamond=VDGD, blue 
circle=VDGDW, purple triangle=VDGS 
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In summary, in Figure 10 it is evident how, in this sensitivity analysis, the “complete” and the “seasonal” 
parameterizations (VDGDW and VDGS) lead to more accurate retrievals of the apportioned IOPs and 
concentrations, while the VDGw wet season parameterization leads to the less accurate retrievals 
particularly for the phytoplankton related properties (aPHY, bbPHY and CCHL).  

 

Figure 11 Distribution of accuracy of the retrieval of SIOPs shape parameters for aLMI. The figure is organized in four 
rows (four model parameter sets: VDGD, VDGw, VDGDW and VDGS), and in four columns (a*

PHY(440)/a*
PHY(676), SCDOM, 

SNAP, and YNAP). The blue histogram presents the distribution of the SIOP parameters in the input dataset and the dark 
bars represent the number of solutions for which the SIOP shape and amplitude parameter set used in the forward 
simulation were correctly selected during the aLMI minimization process. 
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Figure 12 Distribution of accuracy of the retrieval of SIOPs amplitude parameters for aLMI. The figure is organized in 
four rows (four model parameter sets: VDGD, VDGw, VDGDW and VDGS), and in four columns (a*

PHY(440), a*
NAP, bb

*
NAP, 

bbP(555)/bP(555)). The dark bars represent the number of solutions for which the SIOP shape and amplitude 
parameter set used in the forward simulation were correctly selected during the aLMI minimization process. 

 

To evaluate whether the “complete” and the “seasonal” parameterizations (VDGDW and VDGS) accurately 
captured the seasonal variability, the aLMI inversion was performed for both parameterizations on the 
MODIS imagery acquired in March 2012 and in September 2013 during wet and dry season conditions. In 
the inversions with the “complete” parameterization (VDGDW) wet season SIOP sets were erroneously 
selected in the dry season imagery (results not shown).  

Hence for this study the MODIS inversion with “seasonal” parameterization (VDGS) was selected as the 
most appropriate and was implemented for further processing of the entire MODIS water quality time 
series. 
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5 Results and discussion 

This section briefly presents the validation and application of the remote sensing algorithm (based on VDGS 
parameterization) to selected dry and wet season MODIS imagery to evaluate the spatial distribution of 
water quality products, as well as extracted time series data for selected sites to evaluate the seasonal 
variability of these products.   

5.1 Product evaluation 

The performance of the in water retrieval algorithm was evaluated by match up analysis (Figure 13), 
extracting 3x3 satellite pixels from the processed MODIS images at the location of the in situ 
measurements and comparing the median with the in situ measured water quality within a maximum time 
window of ±4 hours to the satellite overpasses. Match ups were retrieved using spherical geometry by 
calculating the minimum distance between in situ and satellite recorded pixel coordinates on the surface of 
the Earth (great circle distance). A valid match up required the location difference to be less than 0.01 
degree in both latitude and longitude dimensions. This maximum distance accuracy criterion is thus at pixel 
level given the one kilometre spatial resolution of the MODIS data. Flags were applied for quality control 
and exclusion of erroneous and out of range pixels. In detail, we flagged land, clouds, and high sun glint in 
addition to high sun angles above 75 degrees and observer zenith angles above 60 degrees using the 
SeaDAS provided Level 2 flags. In addition, we excluded pixels with atmospheric correction out of range 
conditions. Further, a valid match up required at least 6 out of 9 pixels of the match up area to be valid 
(unflagged). 

 
Figure 13 Results of the match up analysis comparing satellite retrieved water quality against ground measurements 
of CHL, TSS or NAP and CDOM. Match up areas are 3 by 3 pixels centred at the locations of the ground observations 
with a maximum time difference of ±4 hours (top) and ±3 hours (bottom panels).  
 



24 
 

The total number of observations for this match up exercise was very limited. Applying the above criteria to 
all wet and dry season field observations, we only obtained 4 6 and 7 9 in situ data points (product 
dependent) that can be directly compared with the satellite retrievals at ±3 and ±4 hour time differences, 
respectively. For coastal waters, especially those with strong tidal influence, it is generally recommended to 
apply much shorter time differences of up to ±30 min only (Doerffer, 2002). Statistics of Mean Absolute 
Percentage Error (MAPE), Root Mean Squared Error (RMSE) and bias were used to evaluate inversion 
performance.  

Chlorophyll a match ups at ±4 hours revealed a MAPE of 161%, with an absolute error of RMSE 1.0 mg m 3 

and a positive bias of 0.5 mg m 3 within the measured concentration range of 0.03 0.2 mg m 3 chlorophyll a 
(Figure 13). At ±3 hours valid observations reduce to only 4 data points. This sample size is certainly 
insufficient to compute robust statistics; however we decided to include the ±3 hour results to evaluate the 
potential impact of tidal differences on the retrievals. At ±3 hours the in situ measured concentration range 
reduced to 0.03 1 mg m 3 showing an increase of retrieval errors (MAPE=217%, RMSE=1.2 mg m 3 and 
bias=0.7 mg m 3).  

The percentage retrieval error for CDOM absorption at 440 nm, based on 7 samples within the measured 
range of 0.2 2 m 1 at ±4 hour time difference, was 69% with a corresponding RMSE of 0.7 m 1 and a negative 
bias of 0.5 m 1. Reducing the match up time window to ±3 hours reduced the in situ range to 0.2 0.8 m 1 
and resulted in a slightly improved retrieval accuracy (MAPE=56%, RMSE=0.4 m 1, and bias= 0.3 m 1, N=4). 
Also the CDOM sample size at this time step (N=4) remains insufficient to conclude on algorithm 
performance. 

Overall best results were obtained for TSS. At ±4 hours matching up 9 samples within the measured 
concentration range of 2 140 g m 3 resulted in a MAPE of 44%, a RMSE of 39.3 g m 3 and a negative bias of   
15.6 g m 3. Similar to CDOM, restricting the time window to ±3 hours further improved retrieval accuracy 

for TSS (MAPE=33%, RMSE 3.4 g m 3, bias= 2.5 g m 3, N=6) within the reduced in situ concentration range of 
2 20 g m 3. 

For the seasonally, TSS and CDOM dominated waters of the Van Diemen Gulf, chlorophyll a remains the 
most difficult water quality parameter to retrieve from remote sensing as phytoplankton only contributes 
~5 20% to the total absorption budget. Retrieval errors of around 100% are realistic for this type of 
optically complex water and have hampered accurate retrieval in other regions of the world such as the 
CDOM dominated Baltic Sea (Darecki and Stramski, 2004). Validation results from an earlier algorithm 
implementation for the Great Barrier Reef (see 4.2) showed chlorophyll a errors of around 90% in less 
turbid waters using a more comprehensive validation data set of N=266 samples within ±3 hours (King et 
al., 2014). Similarly, the retrieval errors obtained for CDOM in the Van Diemen Gulf are within the expected 
range for optically complex waters. In comparison, the CDOM accuracy of the GBR algorithm is 77% (N=16, 
±3 hours), however for a concentration range, a magnitude lower than that found in the Van Diemen Gulf. 
The TSS retrieval error of ~40% obtained for the Van Diemen Gulf waters is exceptionally low compared to 
GBR where the TSS error is ~70% obtained from a more representative validation data set of N=114 
observations within ±3 hours time difference. 

In conclusion, these results should be regarded as preliminary due to the limited sample size of the Van 
Diemen Gulf validation data set and consequently the selected large time differences between in situ and 
satellite observations. A challenge in these highly dynamic and often spatially inhomogeneous 
environments is the scaling problem. The satellite integrates over a larger area on the surface whereas the 
ground measurements represent point observations. The representativeness of such point measurements 
with respect to the satellite observations may be questioned in these highly dynamic waters and many 
more concurrent in situ and satellite observations are needed to the evaluate algorithm performance 
comprehensively.  

5.2 Seasonal variability 

To evaluate the temporal variability of the remotely sensed water quality products, we analysed the full 
(11+ year) MODIS Aqua time series and extracted 3x3 pixels from the satellite retrieved products at the 
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locations of the field observations (Figure 14). For illustration purpose the TSS, CHL and CDOM time series 
data are presented only for station VDG D08 (Figure 2) along with number of valid pixels for each 
extraction (maximum 9).  

 

Figure 14  Temporal variability of key water quality parameters calculated from daily MODIS Aqua imagery at station 
D08 to illustrate their temporal variability. Data was extracted for a 3x3 pixel box. Panels from top to bottom: Total 
suspended solids, Chlorophyll a, CDOM absorption and number of valid pixels for each extraction. Solid lines 
represent averaged data using a 3 day window. 

Large data gaps with low numbers of valid pixels can be observed during the wet season months (Nov Apr). 
These are a result of cloud cover, which limits optical remote sensing from space during these months in 
this region; still distinct seasonal cycles in water quality parameters can be identified.  

The temporal variability of TSS showed the most pronounced seasonal cycles with concentration 
differences ranging two orders in magnitude.  Maximum TSS concentrations, in July, were consistently 
observed with average values ranging between 100 200 g m 3, while concentration minima usually occurred 
in April at the end of each wet season with values around 1 g m 3 TSS. Lower concentrations may have 
occurred at times during the wet season when remote sensing observations were restricted by cloud cover. 
The observed seasonal variability of TSS is consistent with the findings of Blondeau Patissier et al. (2014) 
who used a different satellite sensor and remote sensing method for this same region to quantify the 
phytoplankton bloom dynamics. Remarkable is the observed large intra dry seasonal variability of TSS 
ranging between ~10 and 200 g m 3, which can be attributed to the large tidal variability. Overall higher TSS 
concentrations during the dry season months are likely a result of tidal driven resuspension amplified by 
the prevailing south easterly trade winds. In contrast, wet season TSS concentrations are significantly lower 
as river runoff into the Van Diemen Gulf is largely filtered through most of the Kakadu National Park 
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wetlands (20,000 km2), possibly explaining the surprisingly low concentrations obtained from remote 
sensing. Higher dry and lower wet season concentrations were also confirmed by the 2012 and 2013 field 
observations (see BP09 fig 5A in Figure 6 and Table 1). 

Less pronounced is the seasonal cycle of chlorophyll a at station VDG D08, which appears out of phase 
with the TSS cycle. The 3 daily averaged data is still noisy and except for the years 2005 and 2013 dry 
season concentrations seem on average lower compared to the wet season when it is likely that more light 
(less TSS) and nutrients are available. Blondeau Patissier et al. (2014) report regional differences for the 
temporal variability of chlorophyll a with only the western part of the Gulf showing increased 
concentrations during the wet season months. A more detailed time series analysis should be performed 
using a larger extraction window.    

The variability of CDOM at station VDG D08 is highly correlated with the TSS time series, showing increased 
absorption levels during the dry seasons with average values of 0.2 m 1 compared to the wet season values 
of around 0.03 m 1. CDOM can have different spectral properties depending on its source. The source of 
CDOM can be determined by Excitation Emission Matrix Spectroscopy (EEMS) and initial EEMS analysis 
(results not shown) performed on dry season dissolved organic carbon (DOC) samples revealed that the 
ultra violet spectroscopic characteristics of DOC are consistent with organic matter of relatively low 
molecular weight. This material may arise from pore water which has been subjected to prolonged 
bacterial degradation of photo bleaching of fresh CDOM produced in the water column. Tidal resuspension 
of deposited sediments is the mechanism by which the transfer of pore water CDOM into the water column 
is enhanced during the dry season. CDOM of terrestrial origin is restricted to the near shore waters that are 
influenced by river run off during the wet seasons. 

5.3 Spatial variability 

Figure 15 presents the spatial variability of the remotely sensed water quality products for the contrasted 
wet and dry season images introduced in section 3. 

The spatial distribution of NAP shows the expected gradients with generally higher concentrations found in 
the near shore waters of the Van Diemen Gulf. Overall dry season NAP concentrations were found to be 
one order of magnitude higher compared to the wet season as a result of resuspension (note the different 
concentration scales). Black areas indicate masked pixels from algorithm failure or masking of clouds and 
sun glint as present for the Darwin Harbor region in the dry season image. 

Good de correlation between NAP and chlorophyll a was achieved in the wet season image for the passage 
into the Arafura Sea ~11.5°S and 131.5° 132°E that from visual inspection of the true colour image can be 
identified as suspended sediment. High chlorophyll a concentrations are constrained to the coastal regions 
affected by river run off in this image. The off shore driven plume into the Arafura Sea is mainly composed 
of NAP. A rather uniform distribution (no gradients) of chlorophyll a can be observed in the dry season 
image. Chlorophyll a concentrations seem to be underestimated within a narrow region around 12.1°S and 
131.4° 132.2°E which requires further investigation. Good decorrelation of NAP and chlorophyll a retrievals 
can also be observed for the freshwater influenced coastal waters of the Van Diemen Gulf encompassing 
Kakadu National Park.  

Off shore CDOM values are slightly higher in the dry season image due to resuspension as discussed in the 
previous paragraph, while the wet season image shows a band of increased absorption values along the 
Van Diemen Gulf coastline influenced by river discharge. CDOM and NAP appear uncorrelated in the 
Alligator Rivers Region.   

In summary, quantitative image interpretation revealed that the spatial features observed in remotely 
sensed wet and dry season water quality products are sensible and can be attributed to physical processes. 
Concentration ranges are in agreement with the field observations. 
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Figure 15 Spatial distribution of remotely sensed water quality during wet season (2 April 2012) and dry season (14 
Sep 2013) conditions. Noted the different concentration ranges used for NAP. 
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6 Conclusions  
This report has presented the successful development, implementation and evaluation of a physics based 
inversion model to estimate water quality from MODIS Aqua satellite observations in the Van Diemen Gulf 
region.  

The remote sensing algorithm was parameterized with wet and dry season in situ optical observations of 
the Van Diemen Gulf and was shown to have the ability to deal with the large range of optical variability 
typically found in this region.  

In situ optical observations revealed that the Van Diemen Gulf waters are optically complex and mainly 
seasonally dominated by NAP and CDOM.  

A sensitivity analysis of different regional in water algorithm parameterizations based on synthetic data 
showed best performance for a seasonally split algorithm implementation.  

Good optical closure between in situ measured and modelled apparent optical properties was achieved. 

Product evaluation using a limited validation data set resulted in good retrieval accuracy of NAP and CDOM 
(44% and 69% errors respectively) for waters of this region, classified as optically complex. 

Chlorophyll a was the most difficult water quality parameter to retrieve and was associated with larger 
errors (160%). This is the result of phytoplankton absorption only contributing to 5 20% to the overall 
absorption budget.    

Validation results are preliminary due to the limited number of observations and large time differences 
between in situ and satellite observations in addition to the uncertainty due to the strong tidal impact in 
the Van Diemen Gulf region. 

Remotely sensed water quality concentrations are within the range of the ground observations and 
observed spatial features can be attributed to physical processes such as resuspension or river run off. 

Sediment concentrations in the Van Diemen Gulf were found to be one order of magnitude higher during 
the dry season showing a large variability due to tidally induced resuspension – seasonal cycles of CDOM 
and chlorophyll a were less pronounced.  

Cloud cover limits remote sensing observations of water quality during the wet season. 

7 Recommendations  
Remote sensing time series data should be further analysed and linked with additional biodiversity data to 
detect and help explain potential trends, e.g. changes in mangrove or seagrass extents. 

Remotely sensed CDOM and sediment concentrations should be used as data assimilation inputs to inform 
hydrodynamic and sediment transport models developed for this region. 

This remote sensing approach should be adapted to geostationary satellite observations of the recently 
launched Himawari 8 mission operated by the Japanese Aerospace Exploration Agency (JAXA) that offers 
the potential to resolve tidal cycles by providing remote sensing imagery every 10 min at 1 km spatial 
resolution. 

Regular high quality bio optical, geochemical and radiometric measurements should be integrated into a 
marine monitoring program needed for continuous support of remote sensing algorithm development and 
validation and integrated coastal zone management.   

Management options for maintaining biodiversity of Kakadu National Park should include strategies beyond 
the coastal boundary of the Park as catchments and adjacent coastal marine environments are highly 
connected.  
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Appendix A  Data format description & repository 

The provided water quality outputs associated with this project were stored in Hierarchical Data Format 
(HDF). Each of the 6,057 provided HDF files and contains the following 445x550 pixel sixed data arrays of 
listed below.  

Data pixels may become invalid due to algorithm failure or to the presence of atmospheric or oceanic 
conditions that cannot be corrected for, e.g. contamination due to severe sun glint or simply clouds. Quality 
control is essential prior to data analysis and several masks have been pre applied to reject invalid pixels. 
For the purpose of this study we rejected pixels over land, high sun glint in addition to pixels affected by 
clouds, stray light as well as out of range conditions for sun and observing geometries. A detailed overview 
of all SeaDAS provided masks is provided at http://oceancolour.gsfc.nasa.gov/VALIDATION/flags.html.  Two 
additional bit masks are provided for the CSIRO ANN atmospheric correction algorithm and should be 
analysed in conjunction with the SeaDAS provided flags. The first ANN bit captures out of range conditions 
for all neural network inputs while the second bit provides quality control of all reflectance outputs. 

Freely available and platform independent tools such as HDFView (http://www.hdfgroup.org) can be used 
for visualizing and browsing of the data. 

Variable Description Data type Units Valid range

longitude Longitude 32 bit float Degree 180.0, 180.0

latitude Latitude  32 bit float Degree 90.0, 90.0

l2_flags Level 2 processing flags SeaDAS 32 bit integer Dim less n/a

nn_flags ANN failure flags 32 bit integer Dim less n/a

Chl_MIM Concentration of chlorophyll a 32 bit float g L 1 n/a

Nap_MIM Concentration of non algal particles 32 bit float mg L 1 n/a

a_phy_MIM_441 Absorption of phytoplankton 441 nm 32 bit float m 1 n/a

a_CDOM_MIM_441 Absorption of CDOM 441 nm 32 bit float m 1 n/a

a_tot_MIM_441 Total absorption 441 nm 32 bit float m 1 n/a

bb_phy_MIM_551 Back scattering of phytoplankton 551 nm 32 bit float m 1 n/a

bb_P_MIM_551 Back scattering of particles 551 nm 32 bit float m 1 n/a

bb_NAP_MIM_551 Back scattering of non algal particles 551 nm 32 bit float m 1 n/a

 

 

A copy of the MODIS water quality time series can be obtained from the CSIRO Data Access Portal at: 

http://dx.doi.org/10.4225/08/550B4DD2162D1 
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Appendix B  Symbols and abbreviations 

Symbol/abbreviation Description Units

CHL Chlorophyll a mg m 3

NAP Non algal particles g m 3

TSS Total suspended solids g m 3

YNAP Power law exponent for the NAP backscattering coefficient –  

SNAP, SCDOM Spectral slope of NAP or CDOM nm 1

a Total absorption coefficient m 1

aPHY, aPHY* Absorption, and specific absorption coefficient by phytoplankton m 1

aCDOM Absorption coefficient by CDOM m 1

aNAP, aNAP* Absorption and specific coefficient by NAP m 1

bb Total backscattering coefficient m 1

c Attenuation coefficient m 1

Rrs, rrs Above and below water remote sensing reflectance sr 1

 Wavelength nm

   

aLMI Adaptive Linear Matrix Inversion  

ANN Artificial Neural Network  

AOP Apparent Optical Property  

CDOM Coloured Dissolved Organic Matter  

DOC Dissolved Organic Carbon  

EEMS Excitation Emission Matrix Spectroscopy  

GBR Great Barrier Reef  

FOV Field of view  

SeaDAS SeaWiFS Data Analysis System  

IOP Inherent Optical Property  

IMOS Integrated Marine Observing System  

JAXA Japanese Aerospace Exploration Agency  
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MAPE Mean Absolute Percentage Error  

MODIS Moderate Resolution Imaging Spectrometer  

NASA National Aeronautic and Space Administration  

NCI National Computational Infrastructure  

NERP National Environmental Research Program  

NOAA National Oceanic and Atmospheric Administration  

SIOP Specific Inherent Optical Property  

Stdev Standard deviation  

RMSE Root Mean Squared Error  

TOA Top of Atmosphere  

VDG Van Diemen Gulf  
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