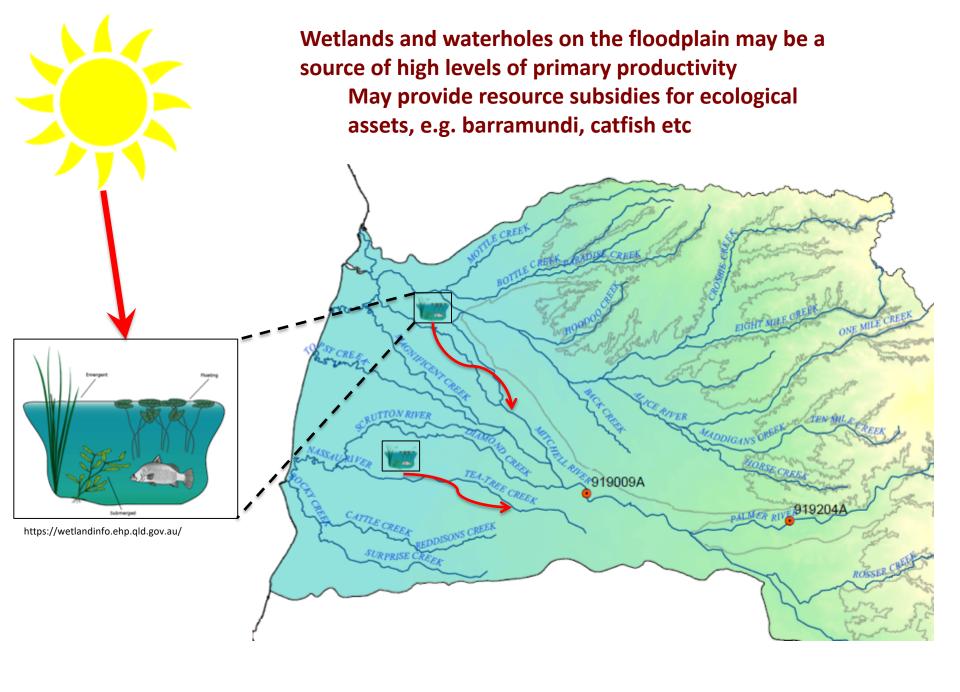
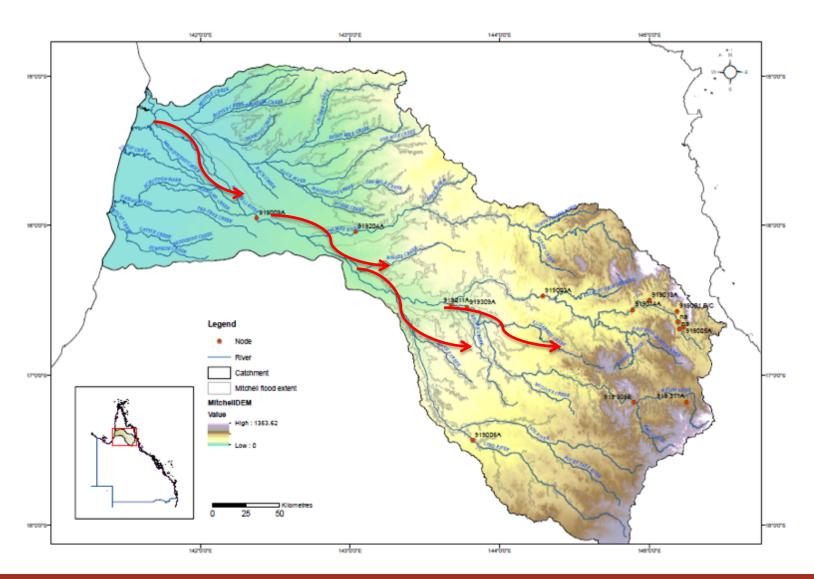
Critical water needs to sustain freshwater ecosystems and aquatic biodiversity in the Mitchell River

Ben Stewart-Koster Australian Rivers Institute, Griffith University

Mitchell River Research Team

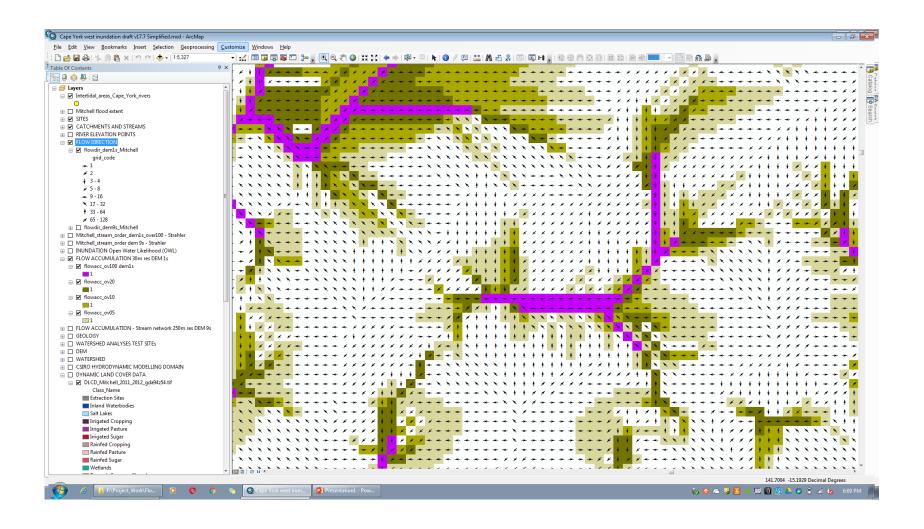

- Griffith University
 - Stuart Bunn
 - Ben Stewart-Koster
 - Michael Venarsky
 - Bianca Molinari
 - Mark Kennard
- Queensland Government (DISITI)
 - Jon Marshall
 - Glenn McGregor
 - Cam Schulz
 - Ryan Woods
 - Kate Hodges
 - Peter Negus
- Queensland Government (DAF)
 - Julie Robins
- Charles Darwin University
 - Dave Crook

- Kowanyama Aboriginal Land and Natural Resource Management Office
 - Gavin Enever
 - John Clark

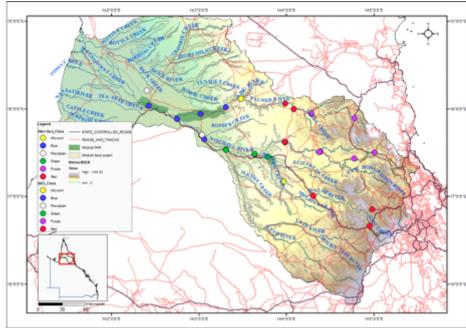

Project overview

Three broad components

- Threat assessment of ecological assets in the Mitchell River
 - Identify the key threats from potential water resource development - completed
- 2. Implications of water resource development on flood flows and ecosystem productivity
 - Focus on floodplain productivity and flow needs to maintain seasonally connected wetlands/waterholes
- 3. Critical flow needs for ecological assets in the Mitchell River
 - Connectivity of the entire Mitchell River catchment and the flow needs to maintain it


Resources generated from the floodplain may move upstream with migrating fish, thereby subsidising upstream food webs

General approach


- How does flow mediate the connectivity of the entire catchment, from floodplain to headwaters
 - Does physical connectivity from flow facilitate ecological connectivity in food webs
- Floodplain primary productivity
 - Field measurements to complement and remote sensing and modelling
- Connectivity of the entire catchment
 - Otolith microchemistry
 - Food web analysis
 - Fatty Acids
 - Stable isotopes
- Flow and floodplain inundation models

Progress – floodplain connectivity

Progress - Field work

- Spatial sampling design focused around catchment geology
 - Fish otoliths can tell us where they have been
 - Fish tissue analyses can tell us what they have been eating and where
 it came from
 - Floodplain productivity mapping can tell us where important wetlands may be
- Combining these datasets with models of flow and floodplain inundation will help identify the critical flow needs of functionally important ecological assets

Project outputs

- Map of hotspots of primary production
 - Which locations on the floodplain are likely important sources of food resources?
 - What is the probable connectivity of the hotspots?
- Models of fish movement
 - Where do the fish of the Mitchell River move?
- Models of food sources and quality
 - Where is the high quality food coming from in the system and which fish can access it?
- These outputs will be summarised in research papers and technical reports
 - Quantitative models underpin all results
 - Conceptual models will synthesise key findings

Project outputs - timeline

Some key proposed research outputs

	Research focus	Output	Expected date
1	Hotspots of primary production and connectivity	Research paper/technical report & map	March 2020
2	Large scale connectivity of the catchment - fish	Research paper & conceptual model	Dec 2018
3	Flow and fish movement	Research paper & conceptual model	Sept 2018
4	Flow and barramundi growth	Research paper & conceptual model	Late 2018
5	Barramundi use of marine and freshwater	Research paper & conceptual model	Late 2018/early 2019
6	Evaluation of water resource development scenarios from CSIRO-NAWRA	Technical report	After July 2018
7	Final report on threat assessment of flow dependent assets	Technical report	June 2020

Value of the project to decision making

- Identify the importance of flows to the connectivity of the catchment
 - Which flows are crucial to allowing fish to access key habitats that support the ecosystem, indigenous and commercial harvest?
- Identifying flow dependencies of key ecological assets
 - Where is does high quality food for the ecosystem come from and what kind of flows are required to ensure its availability?
 - Key fish species, floodplain inundation
 - Alteration of flows may alter food webs on which key assets rely
- With this information, it is possible to explore the consequences of water resource development on aquatic biodiversity and fisheries production, through changes in basal food resources.

This work is supported through funding from the Australian Government's National Environmental Science Program

For more information please contact:

Name: Stuart Bunn & Ben Stewart-

Phone: (07) 37357407, (07) 37359206

Email: s.bunn@griffith.edu.au, b.stewart-koster@griffith.edu.au